

Geoengineering treatment of methane

Andrew Lockley (1) and Alan Gardian (2)

(1) Leeds University, UK (applicant), (2) Leeds University, UK

Methane is a significant GHG, and substantial reservoirs are vulnerable to instability due to AGW. Excursions, from permafrost and clathrates especially, act a positive feedback to AGW. Existing concentrations of well-mixed atmospheric methane substantially exceed pre-industrial levels.

Various geoengineering methods are herein proposed for containment of methane, and/or accelerated oxidation to CO₂ (a gas with a lower GWP over all timescales).

A basic qualitative analysis of each technique is undertaken, to direct further study. Consideration is also given to the potential capacity of each technique to treat the total likely excursions of methane expected as a result of AGW.

Proposed techniques:

Section 0

SRM (comparison option)

Section 1 Pre-emptive treatment of methane reservoirs

Soil heating (polytunnels, heat pumps); Soil aeration; Mining of clathrates; Burning of clathrates

Section 2 Remediation of aquatic methane excursions

Lake sealing; Mixing of aquatic strata; Bubble capture; Lake aeration; Biological oxidation in aquatic environments

Section 3 Remediation of concentrated atmospheric methane

Regenerative thermal oxidation; Electrical ignition; Thermal ignition; Using incendiary munitions

Section 4 Remediation of diffuse atmospheric methane

Thermal oxidation by concentrated solar power; Compression ignition; Chemical degradation

Assessment criteria:

Infrastructure/implementation cost; Energy cost; Expected efficacy; Complexity/development path; Environmental impacts; Potential for CCS