

Eddy diffusivity in the ocean surface

Jose M. Redondo (1), Robert Castilla (2), and Alexei Platonov (1)

(1) Universidad Politecnica de Catalunya, Dept. Fisica Aplicada, Applied Physics, Barcelona, Spain (redondo@fa.upc.es, +34 93 4016090), (2) Universidad Politecnica de Catalunya, Dept. Fluid Mechanics, Terrasa, Barcelona, Spain

In order to measure eddy diffusivity in the ocean using a scaling that includes the thickness of the surf zone as well as the depth and the wave period[1,2]. Measurements in the Mediterranean are almost two orders of magnitude smaller than in the Pacific coast. On a larger scale, and further away from the coast the relevant eddy diffusivities are much larger, because large eddies often scale on the Rossby deformation radius, LR. Direct measurements of the diffusion and the horizontal velocity field were performed at several sites in the coastal areas of Spain. The diffusion coefficients were calculated by evaluation from video images of the area of milk and fluoresceine blobs released at different positions and with different wave heights, wind speeds and tidal induced currents[1-3].

There are instances with either low hipo-di usivity or high hyper-di usivity and local measurements in both cases indicate that spectra deviate strongly from an equilibrium spectrum. A generalized Richardson law [3,4] deduced from Kinematic Simulation (KS) numerical models may be applied also to coastal di usion[5]. The eddy viscosity values show a complex behaviour that depends on wind friction, wave induced Reynolds number and flow topology. The results of more than 100 experiments show that there is a dependence of the maximum di usivity on a Reynolds number derived from the wave height[1]. The increase of di usivity with wave height only occurs for large enough wave Reynolds numbers. Other important factors are wind speed and tidal currents. The horizontal di usivity shows also a marked anisotropy and spectral dependence [4,6].

[1] M. Diez, M. O. Bezerra, C. Mosso, R. Castilla and J. M. Redondo, Experimental measurements and di usion in harbor and coastal zones. Il Nuovo Cimento Vol. 31 C, N. 5-6 Settembre-Dicembre (2008), 843.

[2] Carrillo A., Sanchez M. A., Platonov A. and Redondo J. M., Phys. Chem. Earth B, 26. 4 (2001) 305.

[3] Redondo J. M., Sanchez M. A. and Castilla R., Vortical structures in stratified turbulent flows, in Turbulent Diffusion in the Environment, eds. Redondo J. M. and Babiano A. (FRAGMA, Madrid)(2000), 113.

[4] Castilla R., Redondo J. M., Gamez-Monterol P. J. and Babiano A., Nonlinear Processes Geophys., 14 (2007) 139.

[5] Fung J. and Vassilicos J. C., Phys. Rev. E, 52 (1998) 1677.

[6] Redondo J. M. and Platonov, Environ. Res. Lett., 4 (2009) 14008.