

Wind forcing and dissipation in three-dimensional High Order Spectra deterministic sea state modeling

Yves Perignon (1,2), Felicien Bonnefoy (1), Guillaume Ducrozet (1), and Pierre Ferrant (1)

(1) LMF, Ecole Centrale de Nantes, Nantes, France, (2) Actimar, Brest, France

This work presents a numerical method able to take into account wind wave coupling and energy dissipation related to wave breaking in a deterministic sea state model. We carry out such simulations with an HOS model developed at LMF [U+2010] ECN since 2002 and based on the work of West et al. (1987) and Dommermuth & Yue(1987). This model performs direct numerical simulations of the nonlinear primitive equations by mean of a spectral method in term of decomposition on a basis of eigenfunctions. A parametric coupling for wind forcing is achieved under Miles(1957)'s formulation, and an associated parameterization following Hasselmann(1974)'s theory enables to account for dissipations. The formulation and set parameters referred as BAJ [Bidlot et al.(05)] commonly used in phase averaged spectral model solving the balance equation of energy spectra is implemented. Time evolution for both regular and realistic wave field is then studied.