

Two-Dimensional Stable Isotope Fractionation During Aerobic and Anaerobic Alkane Biodegradation and Implications for the Field

Brandon EL Morris (1), Joseph M Suflita (1), and Hans-Hermann Richnow (2)

(1) Department of Botany and Microbiology, and the Institute for Energy and the Environment, University of Oklahoma, USA,
(2) Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany

Quantitatively, n-alkanes comprise a major portion of most crude oils. In petroliferous formations, it may be possible to relate the loss of these compounds to the levels of biodegradation occurring *in situ* [1]. Moreover, it is important to develop indicators of alkane degradation that may be used to monitor bioremediation of hydrocarbon-impacted environments. *Desulfoglaeba alkanexedens* and *Pseudomonas putida* GPo1 were used to determine if carbon and hydrogen stable isotope fractionation could differentiate between n-alkane degradation under anaerobic and aerobic conditions, respectively in the context of the Rayleigh equation model [2]. Bacterial cultures were sacrificed by acidification and headspace samples were analyzed for stable isotope composition using gas chromatography-isotope ratio mass spectrometry. Carbon enrichment factors ([U+F065]bulk) for anaerobic and aerobic biodegradation of hexane were $-5.52 \pm 0.2\text{\textperthousand}$ and $-4.34 \pm 0.3\text{\textperthousand}$ respectively. Hydrogen enrichment during hexane degradation was $-43.14 \pm 6.32\text{\textperthousand}$ under sulfate-reducing conditions, and was too low for quantification during aerobiosis. Collectively, this indicates that the correlation between carbon and hydrogen stable isotope fractionation ([U+F04C] [U+F029] [U+F020]) may be used to help elucidate *in situ* microbial processes in oil reservoirs, and during intrinsic as well as engineered remediation efforts.

References

1. Asif, M.; Grice, K.; Fazeelat, T., Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. *Organic Geochemistry* 2009, 40, (3), 301-311.
2. Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S. A. B.; Stams, A., J. M.; Schloemann, M.; Richnow, H.-H.; Vogt, C., Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. *Environ. Sci. Technol.* 2008, 42, 4356-4363.