Geophysical Research Abstracts Vol. 12, EGU2010-15098, 2010 EGU General Assembly 2010 © Author(s) 2010

A measurement routine to determine ¹³⁷Cs activities at steep mountain slopes

Monika Schaub, Nadine Konz, Katrin Meusburger, and Chrstine Alewell

Institute of Environmental Geosciences, University of Basel, Bernoullistrasse 30, CH-4056 Basel, Switzerland

Caesium-137 (¹³⁷Cs) is a common tracer for soil erosion. So far, in-situ measurements in steep alpine environments have not often been done. Most studies have been carried out in arable lands and with Ge detectors. However, the NaI detector system is a good priced, easy to handle field instrument. A comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of ¹³⁷Cs gamma soil radiation has been done in an alpine catchment (Urseren Valley, Swizerland). The aim of this study was to calibrate the in-situ NaI detector system for application at steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley were measured ex situ in the laboratory with a GeLi detector, and compared to in situ NaI detector measurements. Ex situ soil samples showed a big variability in ¹³⁷Cs activities at a meter-scale. This large, small scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provide integrated estimates of 137 Cs within the field of view of each measurement (3.1 m²). There was no dependency of ¹³⁷Cs on pH, clay content and carbon content. However, a close relationship was determined between ¹³⁷Cs and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation ($R^2 = 0.86$) was found for ¹³⁷Cs activities (in Bq kg⁻¹) estimated with both, in-situ (NaI detector) and laboratory (GeLi detector) methods which proves the validity of the in-situ measurements with the NaI detector system. This paper describes the calibration of the NaI detector system for field application under elevated ¹³⁷Cs activities originating from Chernobyl fallout.