



## The June 1st 2008 CME in the Interplanetary Medium

T. Nieves-Chinchilla (1), A. F.- Vinas (2), R. Gomez-Herrero (3), O. E. Malandraki (4), N. Dresing (3), M. A. Hidalgo (5), and J. Davila (2)

(1) Catholic University of America, Washington DC, USA (teresa.nieves-chinchil-1@nasa.gov) , (2) Heliosphysics science Division, GSFC/NASA, Greenbelt, MD, USA (Adolfo.Figueroa-Vinas.1@gsfc.nasa.gov, joseph.m.davila@nasa.gov), (3) IEAP, Christian-Albrechts University, Kiel, Germany (gomez@physik.uni-kiel.de, dresing@physik.uni-kiel.de), (4) Institute of Astronomy and Astrophysics, National Observatory of Athens, Greece (omaland@astro.noa.gr), (5) University of Alcala, Madrid, Spain (miguel.hidalgo@uah.es)

In this work we present a combined study/analysis of the counterpart of the CME of June 1st of 2008 in the interplanetary medium. This event has been largely studied because of its peculiar initiation and its possible forecasting consequences for space weather. We show an in situ analysis of the CME in the interplanetary medium in order to shed some light on the propagation and evolution mechanisms of the ICME. The energetic particles play an important role in order to understand the overall event, the source on the Sun and the effect over the Earth. The typical shock associated characteristics with the counterpart of the CMEs in the interplanetary medium has been determined, in order to understand the propagation properties. The magnetic cloud has been studied and analyzed using non force-free models as start point to incorporate expansion.

To accomplish this analysis the IMPACT/STEREO B in-situ measurement have been considered in order to characterize the Interplanetary CME.