

SVM-based base-metal prospectivity modeling of the Aravalli Orogen, Northwestern India

Alok Porwal (1), Le Yu (2), and Klaus Gessner (3)

(1) Centre for Exploration Targeting, Western Australian School of Mines, Curtin University of Technology, Perth, Australia, aporwal@cyllene.uwa.edu.au, (2) Institute of Space Information Technology, Department of Earth Sciences, Zhejiang University, Zhejiang, China, naisoild@gmail.com, (3) Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia, Crwaley, Perth, kguessner@cyllene.uwa.edu.au

The Proterozoic Aravalli orogen in the state of Rajasthan, northwestern India, constitutes the most important metallogenic province for base-metal deposits in India and hosts the entire economically viable lead-zinc resource-base of the country. The orogen evolved through near-orderly Wilson cycles of repeated extensional and compressional tectonics resulting in sequential opening and closing of intracratonic rifts and amalgamation of crustal domains during a circa 1.0-Ga geological history from 2.2 Ga to 1.0 Ga. This study develops a conceptual tectonostratigraphic model of the orogen based on a synthesis of the available geological, geophysical and geochronological data followed by deep-seismic-reflectivity-constrained 2-D forward gravity modeling, and links it to the Proterozoic base-metal metallogeny in the orogen in order to identify key geological controls on the base-metal mineralization. These controls are translated into exploration criteria for base-metal deposits, validated using empirical spatial analysis, and used to derive input spatial variables for model-based base-metal prospectivity mapping of the orogen. A support vector machine (SVM) algorithm augmented by incorporating a feature selection procedure is used in a GIS environment to implement the prospectivity mapping. A comparison of the SVM-derived prospectivity map with the ones derived using other established models such as neural-networks, logistic regression, and Bayesian weights-of-evidence indicates that the SVM outperforms other models, which is attributed to the capability of the SVM to return robust classification based on small training datasets.