Model structures and parameter sets as hypotheses: analysing hydrological differences within the extended GLUE methodology

Tobias Krueger (1), Jim Freer (2), John N. Quinton (3), and Christopher J. A. Macleod (4)

(1) School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK (t.krueger@uea.ac.uk, phone +44 (0)1603 592041), (2) School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK, (3) Lancaster Environment Centre, Lancaster, LA1 4YQ, UK, (4) Cross Institute Programme for Sustainable Soil Function (SoilCIP), North Wyke Research, Okehampton, EX20 2SB, UK

In the light of uncertainty, model structures and parameter sets can be seen as hypotheses of real world processes. The extended Generalised Likelihood Uncertainty Estimation (GLUE) methodology provides a framework for evaluating such multiple hypotheses against observations. In this framework, differences in the hydrological behaviour of elements of the landscape should lead to different model structures and parameter sets being accepted as working hypotheses for these elements – if those hydrological differences dominate over the inherent uncertainties in the observations. In this paper, we analyse hydrological differences between six grassland field-scale lysimeters, which were originally set up as “replicates”, by evaluating multiple model structures, parameter sets and rainfall scenarios against uncertain discharge observations. We show considerable hydrological differences between alleged “replicates”, and demonstrate how their individual behaviour is characterised through different model structures and parameter sets within extended GLUE while accounting for uncertainties throughout the modelling process.