

InSAR Observations of Magmatic Processes in the East African Rift

Juliet Biggs (1), Elizabeth Anthony (2), Cynthia Ebinger (3), Falk Amelung (4), and Noel Gourmelen (4)

(1) Department of Earth Sciences, University of Oxford, U.K. (Juliet.Biggs@earth.ox.ac.uk), (2) University of Texas, El Paso, Department of Geological Sciences, 79968-0555, El Paso, United States, (3) University of Rochester, 227 Hutchison Hall, Rochester, NY 14627, United States, (4) University of Miami, 4600 Rickenbacker Causeway, Florida 33149, United States

The role of magma in accommodating extension and its relationship to fault-based extension in continental rifting is poorly understood. Here we present observations of the temporal and spatial evolution of surface displacements resulting from magmatic processes in the East African Rift.

A systematic InSAR surveys have detected geodetic activity at six of the volcanoes in the East African Rift. In Kenya, subsidence of 2-5 cm occurred at Suswa and Menengai during 1997-2000, ~9cm of uplift at Longonot in 2004-2006 and ~21 cm of uplift at Paka during 2006-2007. The deformation is episodic, and no deformation was observed at these volcanoes during other time-periods. The best-fitting source models for each episode is inflation or deflation of a horizontal lensoid at a depth of 2-5 km. The episodic nature of the activity, its lack of correlation with seasons, and the preferred source geometry are all consistent with activity in the volatile-rich cap to a crystal-rich magma chamber beneath each of the 4 volcanoes.

A seismic swarm occurred in Northern Tanzania from July 14 to August 4 2007. Using InSAR images from Envisat (IS2 and IS6) and ALOS, we show that the seismic swarm was accompanied by 1) subsidence that can be attributed to ~40 cm of normal motion on a NE striking fault, 2) the intrusion of ~2.4 m wide dyke, 3) deflation of a point source magma chamber and 4) collapse of a shallow graben. The large number of available SAR images allows us to examine the sequence and time-dependent behaviour of these processes and relationship between diking and faulting.