

Increased variability of the Arctic summer ice extent in a warmer climate

Hugues Goosse (1), Olivier Arzel (2), Cecilia M Bitz (3), Anne de Montety (1), and Martin Vancoppenolle (1)

(1) Université Catholique de Louvain, Institut d'Astronomie et de Géophysique G. Lemaître, Louvain-la-Neuve, Belgium (hgs@astr.ucl.ac.be, +32-(0)10-474722), (2) Climate Change Research Centre, The University of New South Wales, Sydney, Australia., (3) Department of Atmospheric Sciences, University of Washington, Seattle, USA.

Simulations performed with general circulation models and a model of intermediate complexity show that the variability of the September sea ice extent in the Arctic of the 21st century increases first when the mean extent decreases from present-day values. A maximum of the variance is found when the mean September ice extent is around 3 million km². For lower extents, the variance declines with the mean extent. The behavior is clearly different in Antarctica where the variance always decreases as the mean ice extent decreases, following roughly a square-root law compatible with very simple geometric arguments. Several mechanisms are responsible for the non-linear behavior of the Arctic. However, the strong interhemispheric contrast suggests that the difference in geometrical setting, with an open ocean in the south and a semi-closed basin in the north, plays a significant role.