

Iron Sulfide Minerals in Black Sea Sediments

Christine Franke (1), Eric Robin (2), Susann Henkel (3), Alexandra Courtin-Nomade (4), and Ulrich Bleil (5)

(1) Mines ParisTech, Centre des Géosciences, , 35 rue St. Honoré, 77305 Fontainebleau Cedex, France
(christine.franke@mines-paristech.fr), (2) Laboratoire des Sciences du Climat et de l'Environnement (LSCE),
CEA-CNRS-UVSQ, Campus du CNRS, Bâtiment 12, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France, (3)
Alfred-Wegener-Institute for Polar and Marine Research, Marine Geochemistry, Am Handelshafen 12, 27570 Bremerhaven,
Germany, (4) Laboratoire Groupement de Recherche Eau Sol Environnement (GRESE), Université de Limoges, FST, 123,
avenue A. Thomas, 87060 Limoges Cedex, France, (5) University of Bremen, Department of Geosciences, Klagenfurter
Strasse, 28359 Bremen, Germany

This study presents a multidisciplinary geochemical and environmental magnetic approach, integrating advanced mineralogical techniques to better understand the physicochemical syn-sedimentary and post-depositional processes in the anoxic sediments from the northwestern Black Sea. The investigated gravity core GC 214 was retrieved in 2007 during RV METEOR cruise M72/1 west of the Crimean Peninsula in a water depth of 1686 mbsf.

Geochemical analyses of the pore water and solid phase indicate non-steady state sedimentation. The oxygen-depleted water column conditions, anaerobic oxidation of methane (AOM), and related microbial-driven sulfate reduction favor a highly complex iron sulfide mineral assemblage in the sediment column. The detailed magnetic susceptibility and remanence measurements indicate an irregularly stratified depth profile showing intervals of particularly high values. Further environmental magnetic analyses of hysteresis loops depict strongly elevated coercivity values for those depth horizons, suggesting metastable ferrimagnetic greigite (Fe_3S_4) as the main magnetic carrier phase.

Automated chemical classification (ACC), using electron dispersive spectrometer (EDS) attached to a JEOL 840 scanning electron microscope (SEM) on dispersed particle samples permitted the absolute quantification of the various present iron mineral phases with depth, identified as greigite (Fe_3S_4), pyrrhotite (Fe_7S_8), pyrite (FeS_2), and monosulfides (FeS), such as troilite or markasite.

The statistically stable ACC analyses were carried out on magnetic extracts and density separates to be able to calculate budgets between the different present iron sulfides. We also obtained excellent correlations between the different iron sulfide concentrations and the magnetic signal, which open the possibility to link the absolute particle concentrations to the magnetic signal. Additional synchrotron based micro-XRD analyses on polished sections yield inside into the details of the sulfidation pathways along the depth profile of the sediment sequence and help to develop a conceptual process model for this particular geochemical (paleo)environment.

keywords: Black Sea, iron sulfides, environmental magnetism, geochemical pore water analyses, scanning electron microscopy (SEM), automated chemical classification (ACC), electron dispersive spectrometer (EDS), micro-XRD, absolute particle quantification, conceptual process modeling,