

Global scale water stages from space imagery to support global flood forecasting

Guy J.-P. Schumann (1), Florian Pappenberger (2), and David Mason (3)

(1) University of Bristol, School of Geographical Sciences, Bristol, United Kingdom (guy.schumann@bristol.ac.uk, +44 (0)117 9287878), (2) European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, (3) Natural Environment Research Council Environmental Systems Science Centre, University of Reading, Reading, United Kingdom

Despite the success of studies attempting to integrate remotely sensed data and flood modelling and the need to provide near-real time data routinely on a global scale as well as setting up online data archives, there is to date a lack of spatially and temporally distributed hydraulic parameters to support ongoing efforts in modelling. Therefore, the objective of this project is to provide a global evaluation and benchmark data set of floodplain water stages with uncertainties and assimilation in a large scale flood model using space-borne radar imagery. An algorithm is developed for automated retrieval of water stages with uncertainties from a sequence of radar imagery and data are assimilated in a flood model using the Tewkesbury 2007 flood event as a feasibility study. The application is then extended to a global scale using wide swath radar imagery and a simple global flood forecasting model thereby providing improved river discharge estimates to update the latter.