

Soil Aeration deficiencies in urban sites

Katharina Weltecke and Thorsten Gaertig
(weltecke@hawh-hhg.de)

Soil aeration deficiencies in urban sites
Katharina Weltecke and Thorsten Gaertig

On urban tree sites reduction of soil aeration by compaction or sealing is an important but frequently underestimated factor for tree growth.

Up to 50% of the CO₂ assimilated during the vegetation period is respired in the root space (Qi et al. 1994). An adequate supply of the soil with oxygen and a proper disposal of the exhaled carbon dioxide are essential for an undisturbed root respiration. If the soil surface is smeared, compacted or sealed, soil aeration is interrupted.

Several references show that root activity and fine root growth are controlled by the carbon dioxide concentration in soil air (Qi et al. 1994, Burton et al. 1997). Gaertig (2001) found that decreasing topsoil gas permeability leads to reduced fine root density and hence to injury in crown structure of oaks. In forest soils a critical CO₂ concentration of more than 0.6 % indicates a bad aeration status (Gaertig 2001).

The majority of urban tree sites are compacted or sealed. The reduction of soil aeration may lead to dysfunctions in the root space and consequently to stress during periods of drought, which has its visible affects in crown structure. It is reasonable to assume that disturbances in soil aeration lead to reduced tree vigour and roadworthiness, resulting in high maintenance costs.

The assessment of soil aeration in urban sites is difficult. In natural ecosystems the measurement of gas diffusivity and the gas-chromatographical analysis of CO₂ in soil air are accepted procedures in analyzing the state of aeration (Schack-Kirchner et al. 2001, Gaertig 2001). It has been found that these methods can also be applied for analyzing urban sites. In particular CO₂ concentration in the soil atmosphere can be considered as a rapidly assessable, relevant and integrating indicator of the aeration situation of urban soils.

This study tested the working hypothesis that soil aeration deficiencies lead to a decrease of fine root density and tree vigour on urban soils. For that purpose gas diffusivity, soil CO₂ concentrations and fine root density were measured on typical urban sites in the German cities of Göttingen, Mannheim, and Kassel.

The known characteristics of soil aeration on forest sites could be affirmed for urban soils. A negative correlation was found between gas diffusion coefficients and CO₂ concentration as well as between fine root extension and CO₂ concentration. Changes in crown structure of beech indicating a loss of vigour were found at sites with disturbed aeration.

Diffusivity patterns and CO₂ concentrations of different specific urban soil sealing types were found. On more natural sites (mulch, grass) increased gas diffusion and low CO₂ concentration were present. In contrast, on more compacted or sealed areas (asphalt, paving stone, macadamised road surface) the exchange between soil air and atmosphere was nearly disconnected and soil CO₂ concentrations partly exceeded the known critical value of 0.6 % up to tenfold.

Literature

Burton, A. J.; Pregitzer, K. S.; Zogg, G. P. und Zak D. R. (1997): Effect of measurement CO₂ concentrations on sugar maple root respiration. In: Canadian journal of Forest Research, H. 17, S. 421–427.

Gaertig, T. (2001): Bodengashaushalt, Feinwurzeln und Vitalität von Eichen. In: Freiburger Bodenkundliche Abhandlungen, H. 40, S. 157.

Qi, J.; Marshall, J. D.; Mattson, K. G. (1994): High soil carbon dioxide concentrations inhibit root respiration of

Douglas fir. In: *New Phytol.*, Jg. 128, H. 3, S. 435–442.

Schack-Kirchner, H.; Gaertig, T.; Wilpert, K. v.; Hildebrand, E. E. (2001): A modified McIntyre and Phillip approach to measure top-soil gas diffusivity in-situ. In: *J. Plant Nutr. Soil Sci.*, Jg. 164, S. 253–258.