

U and Th-series isotopes: a probe into time-dependent erosion processes in soils

Claude Hillaire-Marcel (1), Bassam Ghaleb (1), and Florent Barbécot (2)

(1) GEOTOP-UQAM, Montreal, Canada (hillaire-marcel.claude@uqam.ca), (2) Laboratoire d'hydrologie et de géochimie isotopique, Université Paris XI, Orsay, France (barbecot@u-psud.fr)

Disequilibria between ^{238}U - ^{234}Th - ^{234}U - ^{230}Th - ^{226}Ra - ^{210}Pb - ^{210}Po , ^{235}U - ^{231}Pa and ^{232}Th - ^{228}Ra - ^{228}Th , offer probes into time dependent processes over time scales ranging 106 a to a few days, thus the means to document soil erosion rates over a large array of time scales and hydroclimatic forcings. Because lithology constitutes a boundary condition, we intend to illustrate the behavior of such isotopes in carbonate-rich soils, with examples from cool-temperate (St Lawrence Lowlands, Canada) or arid settings (Palmyre area, Syria) but special attention to Mediterranean environments (SE France). In this later case, a >12 m thick unsaturated zone has been sampled, near Beziers, in the recharge zone of the "Astian carbonate sand Aquifer", firstly along a naturally exposed section, then in a cored sequence. Geochemical and mineralogical analyses, including stable isotopes were complemented by ^{228}U , ^{234}U , ^{230}Th , ^{226}Ra , ^{210}Pb and ^{228}Th , ^{232}Th measurements from soil surface, down to about 12 m below surface. Whereas the upper 7 m depict geochemical and isotopic features linked to dissolution/re-precipitation processes with highly variable radioactive disequilibria, the lower part of the sequence shows distinctive properties. In this deep horizon, strong excesses in ^{234}U and ^{230}Th over parent isotopes (i.e. ^{238}U and ^{234}U , respectively) are observed simultaneously whereas ^{226}Ra and ^{230}Th are in secular equilibrium. We interpret these features as an indication for a slow-process enrichment in ^{234}Th (^{234}U) and ^{230}Th , linked to dissolved U-decay during ground-water recharge events. ^{210}Pb deficits (vs. parent ^{226}Ra) are observed down to 12 m along the natural outcropping section and below the top-soil ^{210}Pb -excess in the cored sequence, due to ^{222}Rn -diffusion. It is concluded from this example that beside the strong impact on U- and Th-series disequilibria of fast chemical process occurring in the upper soil horizons, slower processes still leave an imprint with longer-lived disequilibria deeper in the sequence. In both cases, first order estimates of geochemical fluxes involved can be obtained. For a given lithology, they seem to respond essentially to the hydroclimatic conditions of the recent (interglacial) interval in the upper soil horizons, and to older interval conditions, deeper in the soil profile.