

On the use of the unstable manifold correction in a Picard iteration for the solution of the velocity field in higher-order ice-flow models

Bert De Smedt (1), Frank Pattyn (2), and Pieter de Groen (3)

(1) Department of Geography and Earth System Science, DGGF-WE, Vrije Universiteit Brussel, Brussels, Belgium
(bdesmedt@vub.ac.be, +32 (0)262933 78), (2) Laboratoire de Glaciologie, CP 160/03, Faculté de Sciences, Université Libre de Bruxelles, Brussels, Belgium, (3) Department of Mathematics, DWIS-WE, Vrije Universiteit Brussel, Brussels, Belgium

Nonlinear iteration schemes are essential for a fast and stable solution of higher-order ice-flow models (HOIFM's). This topic is gaining momentum as now also ice-sheet models are planned to include higher-order mechanics. In 1996, Hindmarsh and Payne proposed the unstable manifold correction as a way to stabilise the numerical solution of implicit finite-difference discretisations of the time-dependent thickness-evolution equation for ice flow. Since 2002, Pattyn (e.g. Pattyn (2002), Pattyn (2003)) has been using the unstable manifold correction in a Picard iteration to facilitate the solution of the velocity field in HOIFM's. In more recent work, a variant of the original algorithm was used (e.g. Pattyn and others, 2004). Although this variant usually enables a relatively fast solution, it is theoretically less sound. Using a new 2D HOIFM implementation, we show that, in most cases, there is no need for the unstable manifold correction or its variant in a Picard iteration. We also present a more appropriate, stable and simple algorithm that speeds up the iterative solution of the velocity field in HOIFM's for problems with real data.

References

Hindmarsh, R.C.A. and A.J. Payne. 1996. Time-step limits for stable solutions of the ice-sheet equation. *Ann. Glaciol.*, 23, 74-85.

Pattyn, F. 2002. Transient glacier response with a higher-order numerical ice-flow model. *J. Glaciol.*, 48(162), 467-477.

Pattyn, F. 2003. A new 3D higher-order thermomechanical ice-sheet model: basic sensitivity, ice-stream development and ice flow across subglacial lakes. *J. Geophys. Res.*, 108(B8), 2382. (10.1029/2002JB002329.)

Pattyn, F., B. De Smedt and R. Souchez. 2004. Influence of subglacial Lake Vostok on the regional ice dynamics of the Antarctic ice sheet: a model study. *J. Glaciol.*, 50(171), 583-589.