

High-frequency processes and the generation of turbulence at thermal fronts

Martina Preusse (1), Frank Peeters (1), and Andreas Lorke (2)

(1) Limnological Institute (Environmental Physics), University of Constance, Germany, (2) Institute for Environmental Sciences, University of Landau, Germany

High-resolution thermistor chain observations in the interior thermocline of stratified Lake Constance reveal a temporally highly variable occurrence of large-scale overturns (> 1 m). The overturns are associated with various high-frequency processes such as large Kelvin-Helmholtz billows, solitary waves and second mode waves. These high-frequency processes accompany steep thermal fronts resulting from the steepening of a basin-scale internal Kelvin-wave. The occurrence of overturns is therefore periodically coupled to the passage of the basin-scale seiche. The number of overturns increases with the amplitude of the low-frequency wave. Average values of turbulence and mixing corresponding to a single Kelvin-wave cycle are highly variable, as is the occurrence of a specific high-frequency process. Distributions of dissipation rates and eddy diffusivities depend on the actual high-frequency process. The generation of overturns at the steep fronts via the various high-frequency processes was observed between 40 and 50 m above ground suggesting that the collapse of overturns on average leads to a significant amount of turbulence and mixing in the thermocline outside the bottom boundary layer.