

Seasonal Changes in diurnal in-Stream Nitrate Concentration Oscillations

Simon Rusjan, Matjaž Mikoš, Brilly Mitja, and Andrej Vidmar
UL FGG, KSH, Ljubljana, Slovenia (srusjan@fgg.uni-lj.si)

A variability of seasonal changes in the diurnal in-stream $\text{NO}_3\text{-N}$ concentration oscillations was studied through high-frequency measurements of the stream-water's physical, chemical parameters (in-stream $\text{NO}_3\text{-N}$ concentration, water temperature, dissolved oxygen, pH) and hydrometeorological variables (stream discharge, solar radiation) under hydrologically stable conditions. The study was carried out in 2006, within the 42 km^2 forested Padež stream watershed in the southwestern part of Slovenia, which is characterized by distinctive hydrogeological settings (flysch) and climate conditions (transitional area between the Mediterranean and continental climate). Fine temporal resolution of the data measured at 15 minute intervals enabled the identification of the main driving factors responsible for the seasonal variability in the diurnal pattern of the streamwater $\text{NO}_3\text{-N}$ concentrations vs. seasonal and diurnal behavior of meteorological and other water chemistry constituents. Seasonal variability of the shifts in daily maximum (up to 6 hours) and minimum $\text{NO}_3\text{-N}$ concentrations (between 1 and 3 hours) and changes in the amplitude of the daily $\text{NO}_3\text{-N}$ concentration oscillations (in order of 0.1–0.3 mg/l-N) offer supplementary evidence of the in-stream $\text{NO}_3\text{-N}$ processing by photoautotrophs. A wavelet analysis was further used to acquire clear, de-noised $\text{NO}_3\text{-N}$ concentration signals on which models in the form of Fourier series were build, reaching R^2 values between 0.73 and 0.94. The models can be used to simulate the in-stream $\text{NO}_3\text{-N}$ oscillating signal in order to obtain more accurate assessment of the $\text{NO}_3\text{-N}$ exports from the forested watershed in different seasonal settings, undisturbed by the changing hydrological conditions.