



## Implications of high amplitude atmospheric CO<sub>2</sub> fluctuations on past millennium climate change

Thomas van Hoof (1), Lenny Kouwenberg (2), Friederike Wagner-Cremer (3), and Henk Visscher (3)

(1) TNO/Geological Survey of the Netherlands, Geo-energy and Geo-informatics, Utrecht, Netherlands

(tom.vanhoof@tno.nl), (2) Department of Integrative Biology, University of California, Berkeley, USA, (3) Palaeoecology, Institute of Environmental Biology and Laboratory of Palaeobotany and Palynology, Utrecht University, Utrecht, Netherlands

Stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of pre-industrial atmospheric CO<sub>2</sub> concentration complementary to measurements in Antarctic ice cores. Stomatal frequency based CO<sub>2</sub> trends from the USA and NW European support the presence of significant CO<sub>2</sub> variability during the first half of the last millennium (Kouwenberg et al., 2005; Wagner et al., 2004; van Hoof et al., 2008). The timing of the most significant perturbation in the stomata records (1200 AD) is in agreement with an observed CO<sub>2</sub> fluctuation in the D47 Antarctic ice-core record (Barnola et al., 1995; van Hoof et al., 2005). The amplitude of the stomatal frequency based CO<sub>2</sub> changes (> 34 ppmv) exceeds the maximum amplitude of CO<sub>2</sub> variability in the D47 ice core (< 10 ppmv). A modelling experiment taking into account firn-densification based smoothing processes in the D47 ice core proved, however, that the amplitude difference between the stomata record and the D47 ice-core can be explained by natural smoothing processes in the ice (van Hoof et al., 2005). This observation gives credence to the existence of high-amplitude CO<sub>2</sub> fluctuations during the last millennium and suggests that high resolution ice core CO<sub>2</sub> records should be regarded as a smoothed representation of the atmospheric CO<sub>2</sub> signal. In the present study, potential marine and terrestrial sources and sinks associated with the observed atmospheric CO<sub>2</sub> perturbation will be discussed. The magnitude of the observed CO<sub>2</sub> variability implies that inferred changes in CO<sub>2</sub> radiative forcing are of a similar magnitude as variations ascribed to other forcing mechanisms (e.g. solar forcing and volcanism), therefore challenging the IPCC concept of CO<sub>2</sub> as an insignificant preindustrial climate forcing factor.

### References

Barnola J.M., M. Anklin, J. Porcheron, D. Raynaud, J. Schwander and B. Stauffer 1995. CO<sub>2</sub> evolution during the last millennium as recorded by Antarctic and Greenland ice. *Tellus*, v 47B, p. 264-272

Kouwenberg L.L.R., F. Wagner, W.M. Kürschner and H. Visscher 2005. Atmospheric CO<sub>2</sub> fluctuations during the last Millennium reconstructed by stomatal frequency analysis of *Tsuga heterophylla* needles. *Geology*, v. 33, no.1, pp. 33-36

van Hoof T.B., K.A. Kaspers, F. Wagner, R.S.W. van de Wal, W.M. Kürschner and H. Visscher 2005. Atmospheric CO<sub>2</sub> during the 13th century AD: reconciliation of data from ice core measurements and stomatal frequency analysis. *Tellus B*, v. 57, pp. 351-355

van Hoof T.B., F. Wagner-Cremer, W.M. Kürschner and H. Visscher 2008. A role for atmospheric CO<sub>2</sub> in preindustrial climate forcing. *Proceedings of the National Academy of Sciences of the USA*, v. 105, no. 41, pp. 15815-15818

Wagner F., L.L.R. Kouwenberg, T.B. van Hoof and H. Visscher 2004. Reproducibility of Holocene atmospheric CO<sub>2</sub> records based on stomatal frequency. *Quaternary Science Reviews*. V. 23, pp. 1947-1954