The flow structure of pyroclastic density currents: evidence from particle models and large-scale experiments

Pierfrancesco Dellino (1), Ralf Büttner (2), Fabio Dioguardi (1), Domenico Maria Doronzo (1), Luigi La Volpe (1), Daniela Mele (1), Ingo Sonder (2), Roberto Sulpizio (1), and Bernd Zimanowski (2)

(1) Centro Interdipartimentale di Ricerca sul Rischio Sismico e Vulcanico (CIRISIVU) – c/o Dipartimento Geomineralogico, Università di Bari, Via E. Orabona 4, 70125 Bari, Italy, (2) Physikalisch Vulkanologisches Labor, Universität Würzburg, Pleicherwall 1, 97070, Würzburg, Germany

Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current’s fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.