

Tsunami formation as a result of resonant pumping of energy into the compressible water column

Mikhail Nosov (1), Sergey Kolesov (1), Andrey Babeyko (2), and Rongjiang Wang (2)

(1) M.V. Lomonosov Moscow State University, Faculty of Physics, Moscow, Russian Federation (m.a.nosov@mail.ru), (2) Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany (babeyko@gfz-potsdam.de)

Strong bottom earthquakes that excite gravitational tsunami waves give rise to hydroacoustic waves as well. Co-seismic bottom shaking in a tsunami source involve both high-frequency trembling as well as relatively long-lasting process of residual bottom deformation. Ousting the water, this residual bottom deformation results in long gravitational waves - tsunamis; whereas the high-frequency trembling is mostly responsible for the formation of hydroacoustic waves. Under certain conditions, bottom trembling may provide a resonant pumping of energy to the compressible water column. Due to non-linearity, intensive elastic oscillations may provide additional contribution to tsunami energy. The aim of this work is to examine effectiveness of hydroacoustic resonance in a tsunami source. Thereto we perform 3D numerical simulation of compressible water column excited by realistic dynamic co-seismic bottom oscillations modeled with the QSGRN/QSCMP software. We consider various earthquake magnitudes (Mw = 6, 7, and 8) and various ocean depths ranging from 100 m to 10000 m. We demonstrate that for the Mw=8 earthquake, mass water velocity in elastic oscillations reaches value of 5 m/s. Contribution of hydroacoustic non-linear effects to tsunami energy and amplitude is estimated as well.