

Contaminant assessment and removal of volcanic ash in biogenic silica samples from a ca. 50 ka Southern Hemisphere palaeolimnological reconstruction

Tom Stephens (1), Paul Augustinus (1), Alayne Street-Perrott (2), Melanie Leng (3), and Daniel Atkin (1)

(1) University of Auckland, School of Environment, Auckland, New Zealand (t.stephens@auckland.ac.nz), (2) Department of Geography, University of Wales, Swansea, UK, (3) National Isotope Geosciences Laboratory, British Geological Survey, Natural Environment Research Council, Keyworth, Nottingham, UK

The last ca. 50 ka of environmental variability across mid-latitude New Zealand is recorded by the lacustrine sediments of a Late-Quaternary crater maar, Lake Pupuke ($36^{\circ}47.25'S$, $175^{\circ}46.25'E$; Auckland, NZ). Diatom O and Si stable isotope data ($\delta^{18}\text{O}$, $\delta^{30}\text{Si}$) show evidence for the timing of MIS 1, onset and termination of MIS 2 and termination of MIS 3.5. Several millennial scale short-term warm, competitive events are marked by relatively high isotope values that correspond to lesser diatom ^{18}O -discrimination.

The presence of tephra isochrons whilst beneficial to chronological modelling resulted in high % contributions to sedimentary biogenic silica (BSi). As even minor ash inclusions can induce marked $\delta^{18}\text{O}$ variation due to the relatively depleted signatures of tephra compared to BSi (ca. 9 ‰ compared to ca. 35 ‰ respectively) it is essential to remove any tephra present from a biogenic $\delta^{18}\text{O}$ record. Classical chemical treatments to remove organic residue and carbonates (e.g., H_2O_2 , HCl), coupled to traditional purification techniques (e.g., density settling and separation, and magnetic separation) failed to yield sufficient clean diatom silica, ash dominating (min. 40 %) all samples tested ($n = 20$). A novel split-flow lateral-transport thin (SPLITT) fractionation approach was however successful in separating microfossils and silicate particles (e.g., diatom frustules, sponge spicules, phytoliths, tephra, clays) along a density and diametrical gradient (Rings et al, 2004). 77 clean diatom samples were collected for novel dual stable isotope analyses ($\delta^{18}\text{O}$ and $\delta^{30}\text{Si}$) at the National Isotope Geosciences Laboratory (British Geological Survey, UK).

Scanning electron and optical microscopy provided evidence for high sample purity (>90 % count), limited ash contamination and minor, if any clay/carbonate inclusion in all samples. Application of a novel micro-XRF mass balance model (Brewer et al, 2008) revealed up to 31% contamination in the more heavily contaminated samples. Modelled contamination averaged $10\% \pm 8\%$ resulting in a mean enrichment of $5.40\% \pm 5.10\%$. Nonetheless contamination estimates fluctuate independently of visible tephra isochrons suggesting either (a) reworking of <20 μm original ash layers; and/or (b) failure of a simple 2-end member mixture model to effectively identify tephra from biogenic silica by traditional major oxide and trace element geochemistry.

Comparison of modelled diatom $\delta^{18}\text{O}$ to bulk geochemical proxies suggests effective removal of tephra $\delta^{18}\text{O}$ effects during warmer periods and <10 wt.% contribution. Model failures are coincident with periods of greater ash abundance (>10 wt.%) throughout the Last Glacial Period (LGP). Possible reasons for poor model outcomes include:

1. Overlap in major oxide (K_2O , Al_2O_3 , Fe_2O_3 , TiO_2) and trace element (Ba, Rb) tephra end members (e.g., causing model outputs to duplicate tephra contributions);
2. Uptake of dissolved metals and metal oxides to diatom frustules (e.g., higher abundance of tephra geochemical indicators in the pure diatomite end member);
3. Differences in sample preparation between micro-XRF and IRMS (e.g., removal of readily exchanged outer hydroxyl layers by Step-Wise Fluorination [Leng and Barker, 2006]).

References:

Brewer, T.S., Leng, M.J., Mackay, A.W., Lamb, A.L., Tyler, J.J., and Marsh, N.G. 2008. Unravelling contamination signals in biogenic silica oxygen isotope composition: the role of major and trace element geochemistry. *Journal of Quaternary Science*, 23: 321-330.

Leng, M., J., and Barker, P.A. 2006. A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. *Earth-Science Reviews*, 75: 5-27.

Rings, A., Lucke, A., Schleser, G.H. 2004. A new method for the quantitative separation of diatom frustules from lake sediments. *Limnology and Oceanography Methods*, 2: 25–34.