

Infrared spectra of water-ammonium ices. The elusive $6.8 \mu\text{m}$ band

Óscar Galvez, Belén Maté, Victor J. Herrero, Delia Fernández-Torre, Miguel A. Moreno, and Rafael Escribano
CSIC, Instituto de Estructura de la Materia, Madrid, Spain (ogalvez@iem.cfmac.csic.es)

The recent observations made with the Spitzer Space Telescope show that the previously observed $6.8 \mu\text{m}$ spectral feature is noticeably present in many stellar objects: on young stellar objects, dark cloud star-forming region, etc. (1-2) The most generally accepted carrier for this feature is the NH_4^+ (nu4 bending mode), although this hypothesis is still under debate. This work presents an investigation on NH_4^+ in water ices. Frozen solutions of NH_4^+Cl^- and $\text{HCOO}^-\text{NH}_4^+$ in water in an astrophysical range of concentrations and temperatures are analysed by infrared spectroscopy. The ices are prepared by hyperquenching of liquid droplets of these solutions on a cold substrate. Our results indicate that, independently of the counter-ion present, when the ammonium ion is surrounded by water molecules the $6.8 \mu\text{m}$ spectral feature is hardly seen and therefore it cannot suffice to explain the observed spectral feature in the stellar objects (3).

References:

1. Boogert, A.C.A. et al. 2008, ApJ, 678, 985.
2. Zasowski, G., Kemper, F., Watson, D.M., Furlan, E., Bohac, C.J., Hull, C., and Green, J.D., 2009, ApJ, 694, 459.
3. B. Maté, O. Gálvez, V. J. Herrero, D. Fernández-Torre, M. A. Moreno, and R. Escribano, 2009, ApJ, 703, L178.