

A refined LLR model for the determination of relativistic parameters, secular tidal acceleration and UT0

Franz Hofmann (1,2), Liliane Biskupek (1), and Jürgen Müller (1)

(1) Institut für Erdmessung, Leibniz Universität Hannover, Germany (hofmann@ife.uni-hannover.de), (2) Centre for Quantum Engineering and Space-Time Research (QUEST), Leibniz Universität Hannover, Germany

Lunar Laser Ranging (LLR) is carried out for more than 40 years. The data set is analysed in a weighted least-squares adjustment to determine several parameters of the Earth-Moon-system, e.g. the moon's tidal acceleration, lunar orbit and earth orientation parameters. Furthermore, LLR allows for testing relativity, e.g. the strong equivalence principle or the time variability of the gravitational constant.

A further step on the way to mm-accurate LLR analysis is the refined modelling of the moon's interior which mainly affects the moon's rotation. The previous modelling of the moon as a homogeneous, elastic and dissipative body has been extended by the contribution of a possible fluid core.

Based on the refined modelling and using LLR data from 1970 to 2009 the following studies are conducted:

- test of relativistic properties, like strong equivalence principle, non-linearity or relativistic precession,
- frequency dependent modelling of secular tidal acceleration,
- determination of UT0 and comparison with IERS C04 series.

Corresponding results are presented and discussed.