

Numerical simulations of negatively buoyant jets in an immiscible fluid using the Particle Finite Element Method

Monica Mier-Torrecilla (1), Adelina Geyer (1), Jeremy C. Phillips (2), Sergio R. Idelsohn (1), and Eugenio Oñate (1)

(1) CIMNE International Center for Numerical Models in Engineering, Spain

(mdemier@cimne.upc.edu/ageyer@cimne.upc.edu), (2) Department of Earth Sciences, University of Bristol, UK

In this work we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method (PFEM), a newly developed tool that combines the flexibility of particle-based methods with the accuracy of the finite element discretization. In order to test the applicability of PFEM to the study of negatively buoyant jets, we have compared the two-dimensional numerical results with experiments investigating the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter were varied to cover a wide range of Reynolds Re and Froude numbers Fr , such that $0.1 < Fr < 30$, reproducing both weak and strong fountains in a laminar regime ($8 < Re < 1350$). Numerical results, together with the experimental observations, allow us to describe three different fountain behaviors that have not been previously reported. Based on the Re and Fr values for the numerical and experimental simulations, we have built a regime map to define how these values may control the occurrence of each of the observed flow types. Whereas the Fr number itself provides a prediction of the maximum penetration height of the jet, its combination with the Re number provides a prediction of the flow behavior for a specific nozzle diameter and injection velocity. Conclusive remarks concerning the dynamics of negatively buoyant jets may be applied later on to several geological situations, e.g. the flow structure of a fully submerged subaqueous eruptive vent discharging magma or the replenishment of magma chambers in the Earth's crust.