

Climate and Environmental Change in East Africa recorded in a Loess-Paleosol on Mount Kilimanjaro

Roland Zech (1), Yongsong Huang (1), James Russell (1), Rafael Tarozo (1), Li Gao (1), Andreas Hemp (2), and Wolfgang Zech (3)

(1) Geological Sciences, Brown University, Providence, USA (godotz@gmx.de), (2) Ecological Botanical Gardens, University of Bayreuth, Bayreuth, Germany, (3) Institute of Soil Science and Geography, University of Bayreuth, Bayreuth, Germany

Loess-Paleosols deposited during the Late Quaternary on the slopes of Mount Kilimanjaro, Tanzania ($\sim 3^\circ\text{S}$), are valuable archives to reconstruct climate and environmental history in East Africa. Here we present results from a 6.5 m deep soil pit and sediment core from a small depression at ~ 2700 m asl on the eastern slopes, probably spanning most of the Late Quaternary (~ 100 ka). Although a wide range of geochemical analyses has been performed (elemental composition, bulk isotope measurements, mineralogy, grain size), the most interesting results come from hydrogen isotopic measurements of long-chain fatty acids and alkanes, which provide qualitative estimates of past changes in precipitation.

Our record shows lowest δD values from ~ 9 to 5 ka in the Early/Middle Holocene, consistent with regional evidence for an “African Humid Period”. More arid conditions are inferred for the Earliest and Late Holocene ($\sim 10\text{\textperthousand}$ shift), yielding a Holocene moisture pattern opposite to what has recently been inferred from Lake Challa at the foot of Mt. Kilimanjaro and questioning the notion that “double-precession” is a dominant driver in controlling the moisture availability in equatorial East Africa on orbital timescales. A 10 kyr cyclicity is not prominent in the longer record either. Instead, the Younger Dryas and the Last Glacial Maximum are characterized by δD enrichment (=aridity) of $\sim 15\text{\textperthousand}$ and $\sim 20\text{\textperthousand}$ compared to the Early/Middle Holocene, suggesting that northern hemispheric boundary conditions and the resultant southward migration of the ITCZ influenced moisture advection. Much more arid conditions ($\sim 30\text{\textperthousand}$ enrichment) must be inferred for the paleosols older than ~ 60 ka. Although further dating efforts are required to determine the exact timing, this corroborates earlier findings from African lakes that suggested ‘megadroughts’ occurred during Marine Isotope Stages 5 and 4.