

European climate reconstruction based on model analogs constrained by proxy data

Jörg Franke (1), J. Fidel González Rouco (2), and David Frank (1)

(1) Swiss Federal Research Institute WSL, Dendro Sciences Unit, Birmensdorf, Switzerland (joerg.franke@wsl.ch), (2) Universidad Complutense, Department of Astrophysics and Atmospheric Physics, Madrid, Spain

In the pre-instrumental period, climate variability can be assessed using proxy records which exist only at selected locations. This lack of spatial information hampers an understanding of many key features of the climate system. Most widely used approaches to reconstructed spatially resolved climate fields are based on methods involving principal components and regression analysis. These methods have been i) suggested to underestimate low-frequency variability, ii) assume that modes of climate variability identified in the 20th century are stationary and thus representative of natural climate variation back in time and iii) suffering from variance changes over time. Climate models on the other hand simulate comprehensive and physically consistent climate states, though the simulations produced with them cannot be regarded as a detailed representation of the real past climate trajectory, particularly at higher frequency ranges where natural internal variability dominates. A new method, PSR (Proxy Surrogate Reconstruction), circumvents pitfalls associated to previously applied methods by simultaneously capitalizing on the individual strengths of proxy data and model simulations. This is achieved by selecting the model states (analogues) that are most similar to arrays of proxy data available for specific moments of time. We will discuss methodological tests and present a first attempt of a model based climate field reconstruction of European summer temperatures constrained by tree-ring proxies.