

An experimental study of water incorporation into peridotite minerals near the water saturated solidus

István Kovács (1,3), David H. Green (2,3), Jörg Hermann (3), Anja Rosenthal (3), Hugh St. C. O'Neill (3), and William O. Hibberson (3)

(1) Department of Data Processing, Eötvös Loránd Geophysical Institute of Hungary, Budapest, Hungary (kovacsij@elgi.hu),

(2) School of Earth Sciences and Centre for Ore Deposit Studies, University of Tasmania, Hobart, Australia

(david.h.green@utas.edu.au), (3) Research School of Earth Sciences, The Australian National University, Canberra, Australia (joerg.hermann@anu.edu.au, anja.rosenthal@anu.edu.au, hugh.oneill@anu.edu.au)

The incorporation of water in minerals stable near the solidus of a fertile lherzolite compositions was explored experimentally at 2.5 and 4 GPa. The proportion and activity of water were varied to establish the partitioning of water between nominally anhydrous minerals (NAMs), the hydrous minerals pargasite and phlogopite, hydrous melt and water-rich vapour. We added a sensor-layer of olivine or pyroxenes to both sides of the lherzolite material and determined their water content by Fourier-transform infrared spectroscopy. The quantitative and qualitative aspects of 'water' incorporation in coexisting NAMs were determined under conditions in which the roles of hydrous mineral stability, partial melting or vapour-saturation could also be monitored. At 2.5 GPa in a fertile mantle lherzolite we observed pargasite even at very low bulk water contents of 100-250 ppm H₂O. Higher water contents result in increased pargasite abundance, up to 0.3-0.4% H₂O. When this limiting H₂O content is exceeded, melting begins at the vapour-saturated solidus. These observations indicate that pargasite is the major host phase for water storage in the uppermost mantle at depths to ~100 km and T≤1100°C and the "dehydration" solidus applies for water contents <0.3-0.4% H₂O. At higher pressures (>3 GPa) pargasite is not stable and in the absence of K₂O to stabilize the hydrous mineral phlogopite, the maximum water content in NAMs at the vapour-saturated solidus of fertile lherzolite (MORB-source) is ~180 ppm at 4 GPa.