

Paleogene Temperature Evolution of the Southwest Pacific Ocean: Warming and Cooling the Greenhouse

Peter K. Bijl (1), Alexander J.P. Houben (1), Stefan Schouten (2), Appy Sluijs (1), Gert-Jan Reichart (3,4), James C. Zachos (5), Steven M. Bohaty (6), Jaap S. Sinnige Damsté (2), and Henk Brinkhuis (1)

(1) Institute of Environmental Biology, Faculty of Sciences, Utrecht University, Palaeobotany and palynology, Utrecht, Netherlands (p.k.bijl@uu.nl, +31 302539056), (2) Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands., (3) Organic Geochemistry, Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands., (4) Alfred Wegener Institut for Polar and Marine Research Pelagic Ecosystems Marine Carbon Fluxes Am Handelshafen 12 (Building Co-12) D-27570 Bremerhaven, Germany., (5) Earth and Planetary Sciences Department/ Institute of Marine Sciences, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA., (6) National Oceanography Centre, Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom

There is general agreement that (i) high latitude climates were warm in the Greenhouse world of the early Paleogene (~65-35 Myrs ago) and that (ii) this warmth was somehow induced by high concentrations of atmospheric CO₂ (pCO₂). Yet, the Paleogene SST evolution of the surface waters fringing the Antarctic continent is still poorly resolved, and pCO₂ reconstructions for that time are scarce and poorly constrained. Resolving both would increase our understanding of Antarctic climates before the presence of major ice sheets, and may ultimately provide insight in the climate sensitivity to pCO₂ in a Greenhouse world. Up to now, lack of compelling data from around Antarctica had always hampered such reconstructions.

In order to reconstruct the Paleogene SST evolution of the Southern Ocean, we measured the organic paleothermometer TEX86 and UK'37 on tightly calibrated, quasi continuous Paleocene and Eocene sediments retrieved from the East Tasman Plateau (ODP Leg 189, Site 1172, ~65°S paleolatitude). Site 1172 was situated in the middle of the Tasman Current, which brought Antarctic-derived surface currents over the coring site. In the early Paleogene, absolute Tasman Current SSTs range from a tropical ~34°C in the Early Eocene Climatic Optimum (EECO; ~52 to 50 Myrs ago) to about 21°C in the Paleocene and Middle-Late Eocene. Now we have a long ranging record of southern high latitude Paleogene SSTs, we can properly reconstruct the Eocene evolution of SST gradients. We note virtually no latitudinal SST gradient during the EECO and gradual increase thereafter. Superimposed on the Paleogene evolution of Southwest Pacific sea surface temperatures, two phases of extreme warming were recorded at Site 1172: the Paleocene-Eocene Thermal Maximum (PETM; ~56 Myrs ago) and the Middle Eocene Climatic Optimum (MECO; ~40 Myrs ago). We will present high resolution TEX86 SST data and biotic response from the PETM at Site 1172, which to date represents the southernmost marginal marine PETM section. For the MECO we will present high resolution, TEX86, UK'37 and oxygen isotope SST reconstructions in conjunction with a tightly constrained pCO₂ increase. With the SST and pCO₂ reconstructions, we infer an estimate of climate sensitivity of the Paleogene Greenhouse world.