

Carbon dioxide fluxes over the East Siberian Arctic shelf: interannual variability

Irina Pipko (1), Svetlana Pugach (1), Igor Semiletov (1,2), and Leif Anderson (3)

(1) Pacific Oceanological Institute FEB RAS, Vladivostok, Russian Federation (irina@poi.dvo.ru), (2) International Arctic Research Center/University Alaska, Fairbanks, USA, (3) Department of Analytical and Marine Chemistry, Göteborg University, Sweden

We examined the carbonate system dynamics and CO₂ fluxes in the East-Siberian Sea (ESS) and adjacent part of the Laptev Sea (LS) based on our multi-year study conducted on the Arctic shelf in Aug.-Sept. 2003-2005, 2008. It is usually assumed that at high latitudes important CO₂ absorption from atmosphere occurs during the ice free period when primary production is high and water temperature is low. However our data show that during summer-fall season a significant part of the shallow ESS and LS serves as a strong source of CO₂ to the atmosphere. Winter pCO₂ values also exhibit a strong water super saturation beneath the fast ice (up to 5,000 μ atm). We classified near-shore ecosystem of the ESS as mainly heterotrophic (i.e. net production of inorganic carbon) and the main source of allochthonous OC is a terrestrial labile OC mobilized from the degrading permafrost. Anomalously high pCO₂ values (up to 4,000 μ atm) are spatially correlated with areas adjusted to the highly eroded ice-complex coast. Riverine waters are additional significant source of carbon in inorganic (including dissolved CO₂) and organic (mainly dissolved) forms. The variability of the average CO₂ emission during late summer/fall season over the East Siberian Arctic Shelf was ranged between 1 mmol/(m²day⁻¹) and 10 mmol/(m² day⁻¹). It was found that the direction of fluxes changes near the frontal zone between “freshened/source” and “Pacific/sink” waters and this zone’s position varies significantly from year to year. It is mainly attributed to the difference in atmospheric circulation patterns driven the Arctic Ocean circulation.