

A preliminary investigation of methane concentration variations in China by GOSAT

Liping Lei and Liu Qing

Center for Earth Observation & Digital Earth, Chinese Academy of Sciences, Beijing, China, Fax: 86-10-64807826

A preliminary results, that is the spatial distributions variation of CH₄ column amounts in China using GOSAT/TANSO observing data, were demonstrated. We collected GOSAT L2 products data (Ver.002/Ver.003) including the parameters of CH₄ column, and CH₄ dry air mixing ratios (XCH₄) during July-October in 2009 as the research announcements users in the GOSAT project. The landuse data which indicate the percentages of landuse type within 1-km grid were used, which were derived from the landuse map of China in 1:100000 map scale. Moreover we collected the data related with the atmospheric CH₄ concentration in the gas reservoir reported in the references. In our investigations, a statistical analysis was implemented for CH₄ data observed by GOSAT within China. And the spatial and temporal variations of CH₄ were analyzed with various landuse types including the farmland, forest, grassland, water cover and built-up areas, the anthropogenic emission sources, and the main gas reservoir in China. The results showed that the total average of XCH₄ is 1.72ppmv, XCH₄ changed from 1.60 to 1.85, based on statistics of the entire GOSAT observing points from July to August, 2009 in China. The spatial variation of XCH₄ generally agreed with the distribution of regional landuse. The timely variation of XCH₄ tends to lower from July to October. An interesting result was shown that XCH₄ presented higher values in some observing points in Xinjian province, although there are not the large anthropogenic emissions in Xinjiang. It has been reported that the average ratio of atmospheric CH₄ over a condensed gas reservoir in Xinjian was heavier than the global average based on the ground survey from the related reference about the CH₄ concentration, which may be caused by seepage and diffusing of CH₄ from the condensed gas reservoir. When compared XCH₄ observed points by GOSAT nearby the condensed gas field compared with the other points at the distance 394 km off the gas field, the results showed that XCH₄ over the observing points located at the gas field was higher than that at 394 km off it, and XCH₄ at the gas field temporally presented a lower trend from July to October. The temporal variation of XCH₄ maybe related with the temperature changes of consumed soil surface caused by the seepage and diffusing of methane from the condensed gas reservoir. This paper only presented the preliminary results because there are not enough GOSAT observing data available still since IBUKI/GOSAT was launched only just one year. We will implements qualitatively and quantitatively assessment the temporal and spatial variations of CH₄ column amounts with the accumulation of GOSAT observing points in further.