Polar amplification in the mid-Holocene derived from dynamical vegetation change

Ryouta O’ishi (1) and Ayako Abe-Ouchi (1,2)
(1) University of Tokyo, Center for Climate System Research, Kashiwa, Japan, (2) Frontier Research Center for Global Change, Yokohama, Japan

An atmosphere-ocean-vegetation coupled model is used to quantify a vegetation-induced feedback in the mid-Holocene climate. Compared to the reconstructed typical warming over land in northern hemisphere (+2±0.5K), our result indicates +1.25K annual warming over land in the northern hemisphere in the mid Holocene. The inclusion dynamic vegetation and vegetation-climate feedback explain +0.87K out of this +1.25K warming. Due to the summer warming, boreal forest extends northward in mid-Holocene compared to the control experiment. The result indicates that the vegetation-induced feedback amplifies annual warming from +0.13K to +0.36K globally and from +0.38K to +1.32K in boreal terrestrial region (>40N) compared to atmosphere-ocean experiment without vegetation feedback in mid-Holocene. We note that these vegetation-induced feedbacks are dependent to accuracy of climate and vegetation predicted in the control experiment.