

Instability evolution of a reconnecting current-sheet in the full three-dimensional space: driving modes and turbulent configurations

Lapo Bettarini (1) and Giovanni Lapenta (1,2,3)

(1) K.U. Leuven, Centre for Plasma Astrophysics, Department of Mathematics, Leuven, Belgium
(lapo.bettarini@wis.kuleuven.be, 0032 16327026), (2) K.U. Leuven, Leuven Mathematical Modeling & Computational Science Centre, (3) K.U. Leuven, Leuven Centre for Aero & Space Science, Technology and Applications

We provide an exhaustive three-dimensional picture of the reconnecting dynamics of a current-sheet. Recently, a two-dimensional non-steady reconnection dynamics has been proved to occur without the presence of any anomalous effect (Lapenta 2008, Bettarini and Lapenta 2009, Skender and Lapenta 2010) but such a picture must be confirmed in a full three-dimensional configuration wherein moreover all instability modes are allowed to drive the evolution of the system, i.e. to sustain a reconnection dynamics or to push the system along a different instability path. In fact, here we propose a full-space analysis allowing us to determine the longitudinal and, possibly, the transversal modes driving the different current-sheet disruption regimes, the corresponding characteristic time-scales and to study system's instability space-parameter (plasma beta, Lundquist and Reynolds numbers, system's aspect ratio). The conditions leading to an explosive evolution rather than to a diffusive dynamics as well as the details of the reconnection inflow/outflow regime at the disruption phase are determined. According to the two-dimensional case, the non-steady reconnection leads to a chaotic regime within the sheet and therefore the possible development of turbulent cascades in the cross-sectional planes are analyzed during the three-dimensional evolution. Such system embedded in a solar-like environment and undergoing a non-steady reconnection evolution may determine the formation both of jets and waves influencing the dynamics and energetic of the upper layers and of characteristic down-flows as observed in the low solar atmosphere.