

Ozone precision Measurements for the Remote Sensing of Atmospheres and Implications

Christof Janssen, Mickaël Guinet, Didier Mondelain, and Claude Camy-Peyret

Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique, Université Pierre et Marie Curie / CNRS, France

Ozone is a key species in planetary atmospheres. Its important role for the existence of life on Earth and its use as a dynamical and photo-chemical marker for the atmospheres of telluric planets (Mars, Venus) and supposedly also of Earth-like exo-planets make it a preferred object of spectroscopic studies, frequently in the strong bands at $10\text{ }\mu\text{m}$. Existing spectroscopic databases show inconsistencies of some %, however. Motivated by the investigation of the feasibility of a stratospheric wind interferometer (SWIFT) based on ozone absorption at $1133.43351\text{ cm}^{-1}$, which was funded by the Canadian Space Agency, we have undertaken a spectroscopic study of ozone in the $10\text{ }\mu\text{m}$ range and at the UV reference wavelength of 253.65 nm . Our results suggest a correction of both, the currently recommended reference value in the UV and the infrared intensities. Other uncertainties in the spectroscopic databases are also discussed.