

Strategy for harmonized retrieval of column-averaged methane from the mid-infrared NDACC FTS-network and intercomparison with SCIAMACHY satellite data on global scale

Frank Forster, Ralf Sussmann, Tobias Borsdorff, Markus Rettinger, and the FTIR Validation Team
Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany (frank.forster@imk.fzk.de)

Authorship: Forster, F., Sussmann, R., Borsdorff, T., Rettinger, M., Blumenstock, T., Buchwitz, M., Burrows, J.P., Duchatelet, P., Frankenberg, C., Hannigan, J., Hase, F., Jones, N., Klyft, J., Mahieu, E., De Mazière, M., Mellqvist, J., Notholt, J., Petersen, K., Schneising, O., Strong, K., Taylor, J., Vigouroux, C.

Global measurements of column-averaged methane have recently shown a step forward in data quality via year 2003 and 2004 retrievals from two different processors, namely IMAP-DOAS ver. 49 and WFM-DOAS ver. 1.0 (Frankenberg et al., 2008; Schneising et al., 2009). Accuracy and precision have approached the order of 1 %, and can be considered for inverse modelling of sources and sinks. This means at the same time that the quality requirements for ground-based validation data have become higher. In order to guarantee a station-to-station consistency of <1 % we performed a harmonization effort for 12 selected globally distributed mid-infrared FTIR stations of the Network of the Detection of Atmospheric Composition Change (NDACC). Station-to-station biases are eliminated by using identical micro-windows, spectroscopic line lists, retrieval parameters, sources of ancillary data like pressure-temperature profiles, and water vapor data for deriving dry air columns. Furthermore, a geophysically consistent set of prior information for the retrievals at all stations was established. A new altitude-correction scheme is presented which allows for inclusion of high-altitude ground-sites into the validation data set. Our network validation study utilizes the validation strategy developed during the first validation of SCIAMACHY column-averaged methane by FTIR (Sussmann et al., 2005). The outcome of the new study is the accurate determination of the satellite-ground station biases as a function of latitude on global scale.

References

Frankenberg, C., Bergamaschi, P. et al.: Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT, *Geophys. Res. Lett.*, 35, L15811, 2008.

Schneising, O., Buchwitz, M. et al.: Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 2: Methane, *Atmos. Chem. Phys.*, 9, 443-465, 2009.

Sussmann, R., Stremme, W. Buchwitz, M., and de Beek, R.: Validation of ENVISAT/SCIAMACHY columnar methane by solar FTIR spectrometry at the Ground-Truthing Station Zugspitze, *Atmos. Chem. Phys.*, 5, 2419–2429, 2005.