Paleoseismic investigations at the Cal thrust fault, Mendoza, Argentina

Eric Salomon (1), Silke Schmidt (1), Ralf Hetzel (1), and Francisco Mingorance (2)

(1) Institut für Geologie und Paläontologie, Universität Münster, Corrensstraße 24, Münster, 48149, Germany,
e.salomon@uni-muenster.de, (2) Instituto de Mecánica Estructural y Riesgo Sísmico, Universidad Nacional de Cuyo, Casilla de Correo 405 - Correo Central, Mendoza, 5500, Argentina

Along the active mountain front of the Andean Precordillera between 30°S and 34°S in western Argentina several earthquakes occurred in recent times, including a 7.0 Ms event in 1861 which destroyed the city of Mendoza and killed two thirds of its population. The 1861 event and two other earthquakes (Ms = 5.7 in 1929 and Ms = 5.6 in 1967) were generated on the Cal thrust fault, which extends over a distance of 31 km north-south and runs straight through the center of Mendoza. In the city, which has now more than 1 million inhabitants, the fault forms a 3-m-high fault scarp. Although the Cal thrust fault poses a serious seismic hazard, the paleoseismologic history of this fault and its long-term slip rate remains largely unknown (Mingorance, 2006).

We present the first results of an ongoing paleoseismologic study of the Cal thrust at a site located 5 km north of Mendoza. Here, the fault offsets Late Holocene alluvial fan sediments by 2.5 m vertically and exhibits a well developed fault scarp. A 15-m-long and 2-3-m-deep trench across the scarp reveals three east-vergent folds that we interpret to have formed during three earthquakes. Successive retrodeformation of the two youngest folds suggests that the most recent event (presumably the 1861 earthquake) caused \sim1.1 m of vertical offset and \sim1.8 m of horizontal shortening. For the penultimate event we obtain a vertical offset of \sim0.7 m and a horizontal shortening of \sim1.9 m. A vertical displacement of \sim0.7 m observed on a steeply west-dipping fault may be associated with an older event. The cumulative vertical offset of 2.5 m for the three inferred events is in excellent agreement with the height of the scarp. Based on the retrodeformation of the trench deposits the fault plane dips \sim25° to the west. In the deepest part of the trench evidence for even older seismic events is preserved beneath an angular unconformity that was formed during a period of erosion and pre-dates the present-day scarp. Dating of samples to determine the recurrence interval of these seismic events and the long-term slip rate of the fault is in progress.

References