Geophysical Research Abstracts Vol. 12, EGU2010-5290, 2010 EGU General Assembly 2010 © Author(s) 2010 ## DERIVATION OF THE epsilon EQUATION FROM A TWO-POINT CLOSURE Vittorio Canuto (1,2), Ye Cheng (1,3), Armando Howard (1,4) (1) NASA Goddard Institute for Space Studies, New York, NY, United States (VCANUTO@GISS.NASA.GOV, 212 678-5560), (2) Dept. of Applied Phys. and Applied Math., Columbia University, New York, NY, United States, (3) Center for Climate Systems Research, Columbia University, New York, NY, United States , (4) Dept. of Phys. Environ. and Computer Sci., Medgar Evers College of CUNY, NY, United States We present a derivation of the equation for the turbulence dissipation rate ε for a shear driven flow. In 1961, Davydov used a one-point closure model to derive the ε -equation from first principles but the final result contained undetermined terms and thus lacked predictive power. In 1987, Schiestel and in 2001, Rubinstein and Zhou attempted to derive the ε -equation also from first principles using a two-point closure but their method relied on a phenomenological assumption. The standard practice has thus been to employ a heuristic form of the ε -equation that contains three empirical ingredients: two constants c_1 , c_2 and a diffusion term D_{ε} . We have employed a two-point closure and obtained the following results: 1) the empirical constants get replaced by new c_1 , c_2 that are now functions of K and ε , 2) c_1 and c_2 are not independent since we derive a general relation between the two valid for any K, ε , 3) homogenous flows: c_1 , c_2 become constant with values close to the empirical values, 4) inhomogeneous flows: the empirical form of the diffusion term D_{ε} is no longer needed since it gets substituted by the $K - \varepsilon$ dependence of c_1 and c_2 which plays the role of the diffusion, together with the diffusion of the turbulent kinetic energy D_K which now enters the new ε equation. Thus, the three empirical ingredients c_1 , c_2 and D_{ε} are substituted with a single function $c_1(K, \varepsilon)$ or $c_2(K, \varepsilon)$, plus a D_K term. We present three tests of the new equation for ε , one concerning channel flow and two concerning the shear-driven PBL (planetary boundary layer).