

Natural and synthetic gas hydrates studied by Raman spectroscopy

Jean-Philippe Savy, Nikolaus Bigalke, Giovanni Aloisi, Elke Kossel, Moritz Pansegrouw, and Matthias Haeckel
Leibniz Institute for Marine Sciences (IFM-GEOMAR) , Kiel, Germany. jsavy@ifm-geomar.de

Over the past decade, the interest in using CH₄-hydrates as an energy resource and CO₂-hydrates as a storage option for anthropogenic CO₂ has grown in the scientific community as well as in the oil and gas industry. Among all the techniques used to characterize gas hydrates, the non-destructive, non-invasive Raman spectroscopy provides significant insights into the structure and composition of hydrates.

In this study, we compare gas hydrates synthetically produced in the laboratory with natural hydrate samples collected from marine sediments. CO₂ and CH₄ gas hydrates were investigated with a high-resolution Raman microscope at in-situ p-T conditions. A water-filled glass capillary (inner diameter: 1.7 mm) was placed in a stainless steel cell, which was sealed, cooled down to 3.6 °C and pressurized to 60 bar with liquid CO₂. Video images taken after 1 h revealed droplets (~10 μm in diameter) trapped in the ice-like solid. The two Fermi dyads of CO₂ in the liquid and hydrate phase at 1274 & 1381 cm⁻¹ and 1280 & 1384 cm⁻¹, respectively, confirm the presence of liquid CO₂ droplets trapped in a CO₂-hydrate matrix.

Equivalent experiments were conducted with CH₄ gas at 1 °C and 90 bar. The nucleation of CH₄-hydrate was followed in the Raman spectral region of the C-H stretching mode. At the early stage of the nucleation, the peak at 2915 cm⁻¹ (CH₄ in small cages) was stronger than the one at 2904 cm⁻¹ (CH₄ in large cages) indicating that methane starts to populate the small 5¹² cages of the s-I hydrate structure first and then, as nucleation continues, the large cages are stabilized leading to a quickly growing peak at 2904 cm⁻¹ until a final peak intensity ratio of 3.7 is established. In contrast to other studies, intermediate stabilization of the s-II structure was not observed. Video images confirmed the absence of gas inclusions. The hydrate density, 1.1 & 0.9 for CO₂-hydrate and CH₄-hydrate respectively, compared to the one of water may explain the formation of inclusions during the crystallization of hydrates.

Finally, we investigated a natural CH₄ hydrate sample collected from Hikurangi Margin, New Zealand. Areal mapping of the sample revealed a constant peak area ratio of 3.7 between large and small cages, identical to our synthetic CH₄-hydrate. We also used the relative Raman signal intensities between CH₄ and H₂O to quantify the spatial variation in cage occupancy and methane concentration in the natural hydrate sample. Compared to synthetic CH₄-hydrate, the natural sample shows an inhomogeneous overall distribution of methane content.