

He and N isotopes in thermal springs of the Mexican Pacific coast: subducting slab, continental crust and mantle contributions to fluids of a forearc zone.

Yuri Taran (1), Salvatore Inguaggiato (), Nicholas Varley (), and Alejandro Ramirez Guzman ()

(1) UNAM, Volcanology, Mexico, Mexico (taran@geofisica.unam.mx), (2) Istituto Nazionale di Geofisica e Vulcaniologia, Palermo, Italy (s.inguaggiato@ ingv.pa.it), (3) Universidad de Colima, Colima, Mexico, (4) Universidad Autonoma de Taxco, Guerrero, Mexico

Two oceanic plates are subducting beneath the continent along the Mexican Pacific coast: Cocos Plate south of Colima graben ($\sim 19^\circ\text{N}$) and a young Rivera Plate to the north of Colima graben. The trench is situated ~ 70 km from the shore line which is very close comparing with other continental margins. There are 26 groups of thermal springs between 16°N and 21°N , in a 30 km-wide zone along the coast. The temperature and salinity ranges are $40\text{-}90^\circ\text{C}$ and $100\text{-}20,000$ ppm, respectively. The springs are mainly of a low salinity (< 1000 ppm), high pH (8-10) and temperatures of $37\text{-}50^\circ\text{C}$. Almost all springs discharge bubbling gas with N₂ as a predominant component and have He content between 400 and 1500 ppmV. Two groups of springs are methane-rich (70 and 10 vol%). The CO₂-rich springs and high-HCO₃ waters are absent.

All springs to the south of the Michoacan-Guerrero boarder ($\sim 18^\circ\text{N}$) are characterized by N₂/Ar ≈ 100 , 15N ≈ 0 and 3He/4He ratios lower than 0.2Ra (where Ra=1.4x10⁻⁶, the air ratio) except the Paso Real springs (0.9Ra) located within a Coyuca seismogenic fracture zone. Springs along the Michoacan coast, the northern part of the Cocos Plate subduction, discharge gases with $1.5\text{Ra} < 3\text{He}/4\text{He} < 2.5\text{Ra}$ but still low, close to the atmospheric N₂/Ar and 15N ≈ 0 . All springs located within the Colima graben have high 3He/4He (up to 4.5Ra) and elevated N₂/Ar and 15N. The El Salitre (La Tuna) springs located within the southern board of the Colima graben discharge saline Na-Ca-Cl water (46°C , Cl=15,000 ppm) with N₂/Ar > 400 , 15N = +4.6‰, almost no CH₄ ($< 0.1\%$) and 3He/4He = 2.3Ra. The only group of hot springs within the Jalisco Block and close to the shore line, Rio Purificacion, discharge hot, saline Na-Cl water (80°C , 12,000 ppm of Cl), with N₂/Ar > 300 , 15N = +5‰ and 3He/4He = 0.4Ra. A number of hot and warm springs associated with Puerto Vallarta graben are characterized by high 3He/4He up to 4.5Ra, elevated N₂/Ar and 15N. The last group, Punta Mita hot springs ($20^\circ 46'\text{N}$), are submarine vents, 10 m deep. Their gas has elevated CH₄ content, high N₂/Ar and 3He/4He = 0.4Ra.

The results are discussed in several aspects: (1) Why this low heat flow zone is characterized by so high hydrothermal activity? (2) Does the elevated 3He/4He within Michoacan-Colima profile relate to the slab detachment associated with the contact between Cocos and Rivera plates? (3) Do high N₂/Ar and 15N above the Rivera Plate subduction indicate the forearc degassing of the accreted organic-rich oceanic sediments? (4) How to estimate the total flux of volatiles released in a forearc zone from the subducting slab?