

Comparing remotely-sensed and in-situ data on response of forest growth to climate variability and change in European Russia.

Malcolm Hughes (1), Alexander Olchev (2), and Andy Bunn (3)

(1) University of Arizona, Laboratory of Tree-Ring Research, Tucson, Arizona, United States (mhughes@ltrr.arizona.edu), (2) A.N.Svertsov Institute of Ecology and Evolution, Moscow, Russia (aoltche@gmail.com), (3) Environmental Sciences, Western Washington University, Bellingham, Washington, United States (Andy.Bunn@wwu.edu)

We present the first results of our attempt to place satellite observations of forest growth in European Russia in a longer-term context, so as to better understand the nature and causes of interannual to multidecadal variability, and potential response of forest to climate change. Three main kinds of data are being used: 1) Estimates of forest growth derived from satellite observations. This dataset will be almost 30 years long by the end of our project; 2) A new network of tree-ring chronologies being developed for a major part of European Russia, specifically designed for this project. Virtually all, if not all, of these data will be 100 years or longer; 3) Meteorological data from the region (40-130 years data, depending on location).

The study area is a latitudinal belt from Central European Russia to the northern limit (boundary) of the boreal forest community. The key questions being addressed are: a) Are the remotely-sensed and tree-ring derived measures of vegetation growth consistent with one another? b) Can their similarities and inconsistencies be explained by known mechanisms in nature? c) To what extent do they capture the same or complementary aspects of forest growth? d) What is the role of climate variability in causing the individual and common patterns of variability in the remotely-sensed and tree-ring data? e) How typical have the past 30 years been of the previous 100 years? f) Have relationships between climate and forest growth changed in recent years, or are they within the range of variability of the last 100 years? g) To what extent can the relationships between forest growth and climate as derived from these datasets help constrain expectations of near future change in forest growth?

In addition we plan to combine our observations and modeling of forest growth over a huge region with intensive measurement of forest metabolism (NEE of CO₂) at the Federovskoe flux tower site.