

A Hierarchy of Snowmelt Models for Canadian Prairies: Temperature-Index, Modified Temperature Index and Energy-Balance Models

Thian Yew Gan , Purushottam Singh, and Adam Gobena

U of Alberta, Edmonton, Canada (tgan@ualberta.ca)

Three semi-distributed snowmelt models were developed and applied to the Paddle River Basin (PRB) in the Canadian Prairies: (1) A physics-based, energy balance model (SDSM-EBM) that considers vertical energy exchange processes in open and forested areas, and snowmelt processes that include liquid and ice phases separately; (2) A modified temperature index model (SDSM-MTI) that uses both near surface soil temperature (T_g) and air temperature (T_a), and (3) A standard temperature index(SDSM-TI) method using T_a only. Other than the “regulatory” effects of beaver dams that affected the validation results on simulated runoff, both SDSM-MTI and SDSM EBM simulated reasonably accurate snowmelt runoff, snow water equivalent and snow depth. For the PRB, where snowpack is shallow to moderately deep, and winter is relatively severe, the advantage of using both T_a and T_g is partly attributed to T_g showing a stronger correlation with solar radiation than T_a during the spring snowmelt season, and partly to the onset of major snowmelt which usually happens when T_g approaches 0°C. After re-setting model parameters so that SDSM-MTI degenerated to SDSM-TI (effect of T_g is completely removed), the latter performed poorly, even after re-calibrating the melt factors using T_a alone. It seems that if reliable T_g data are available, they should be utilized to model the snowmelt processes in a Prairie environment particularly if the temperature-index approach is adopted.