

Changes in Glacier Mass Balance in Watershed of Sary Jaz-Kumarik Rivers of Tianshan Mountains in 1957-2006 and Their Impact on Water Resources and Trend to End of the 21th Century in Tarim River Basin

Yongping Shen (1), Guoya Wang (1), Yongjian Ding (1), Weiyi Mao (2), Shiyin Liu (1), Shunde Wang (3), and Duishen M Mamatkanov (4)

(1) Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China (shenyp@lzb.ac.cn, snowmantibet@gmail.com /+86-931-4967253), (2) Xinjiang Climate Center, Ürümqi 830002, China , (3) Aksu Hydrology and Water Resource Bureau, Aksu 843000, China, (4) Institute of Water Problems and Hydropower of the National Academy of Sciences of the Republic of Kyrgyzstan, Bishkek 720033, Kyrgyz Republic

Tarim River system is mainly fed by glaciers and snow melt water. A number of rivers fed by snowmelt and glacier melt begin in the mountains and drain into the basin with average annual streamflow of about 35 billion m³. Around the rivers may be found oases of small villages and agriculture. There are a total of 14285 glaciers, with an area of 23628.98 km², ice reserves 2669.435 km³ in Tarim river system. Runoff from glacier melt water reach up 15 billion m³, occupy 40% and more of total surface runoff of the basin, is one of the most important water resources in the basin. We employed a maximum entropy method to estimation of year-to-year mass balance change and glacier water resources for watershed glacier-covered based on meteorological and hydrological data, and reconstructed glacier mass balance series for Sary Jaz -Kumarik River Basin of Aksu River, a main sources river of the Tarim River basin.

The drainage area is 12816 km² above Shehel Hydrological Station Aksu River China in Sary Jaz -Kumarik River Basin in which glacier area occupies 25% with an area of 3195.41km². The glacier runoff is about 895mm, river runoff is 381.3 mm. Ice melt contributed about 58.65% of the total runoff in the Shehel hydrological Station, so the effects of changes in glacier meltwater on water resources is very vital. The mean annual runoff is $48.64 \times 10^8 \text{ m}^3$ in the period of 1957-2006. The mean annual runoff is increasing dramatically since 1993. The mean annual runoff increased by $10.56 \times 10^8 \text{ m}^3$, also is 23% in 1994-2006 than in 1957-1993. As a result of a large number of glacier ice melting which were accumulated in the past, by preliminary calculations, mass balance wastages supply additionally $309.47 \times 10^8 \text{ m}^3$, an increase of $6.19 \times 10^8 \text{ m}^3$, about 13% of annual runoff to the river due to climate warming in the past 50 years. The supply additionally of glacier melt is $5.3 \times 10^8 \text{ m}^3$, and occupies 11% of the mean annual river runoff in 1957-1993, and is $8.8 \times 10^8 \text{ m}^3$ and 18% in 1994-2006. With climate warming, although precipitation increasing, glaciers is more sensitive to temperature, the glacial meltwater will be increasing continually.

To presume a little change in glacier area in the future, the temperature rise 4°, precipitation increased by 25mm in 2071-2100, an average annual runoff will be $66.2 \times 10^8 \text{ m}^3$, which increases by $19.75 \times 10^8 \text{ m}^3$ and the rate of increase is 43% than 1960-1990, and increases by $11.75 \times 10^8 \text{ m}^3$ and 22% than 1991-2006.

Key words: glacier mass balance; meltwater; climate change; response of runoff; future trend; Aksu River, Tianshan, Central Asia