

Late Quaternary mega-lakes of central Australia: evidence of varying moisture sources

Tim Cohen (1), Gerald Nanson (2), Brian Jones (2), John Jansen (3), Jacobs Zenobia (2), Treble Pauline (4), Price David (2), May Hendrik (2), and Smith Andrew (4)

(1) Department of Environment and Geography, Macquarie University, Sydney, Australia

(Tim.cohen@mq.edu.au/61-2-98508420), (2) GeoQuest Research Centre, School of Earth and Environmental Sciences, University of Wollongong, Australia., (3) Department of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK, (4) Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia

Optically stimulated (OSL) and thermoluminescence (TL) ages from relict shorelines, along with accelerator mass spectrometer (AMS) ^{14}C ages from freshwater molluscs reveal a record of mega-lake phases over the late Quaternary for Lake Mega-Frome, situated around the eastern and northern margin of the Flinders Ranges in South Australia. Additional lacustrine, palynological and terrestrial proxies are used to reconstruct a record that extends as far back as 95 ka and demonstrates that Mega-Frome was joined to the adjacent mega-Eyre at 50 – 47 ka forming the largest palaeolake on the Australian continent. Since then, Mega-Frome has filled independently at 33 – 31 ka (Heinrich event 3) and at the termination of the Last Glacial Maximum (LGM) to depths far in excess of those seen today. Further evidence of subsequent lake-filling episodes are recorded in the late Pleistocene, the mid Holocene and the medieval warm period. We present evidence for multiple moisture sources over this time period with lake phases being driven by either an enhanced southern ocean circulation or an enhanced Australian Summer Monsoon or a combination of both. This is the first palaeohydrological record for a large area of southern central semi-arid Australia indicating a progressive shift to more arid conditions throughout the last glacial cycle.