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We have developed an efficient particle filter for nonlinear data assimilation, of striking simplicity and wide appli-
cability [1,2].

Particle filters are often presented in the setting of an Ito stochastic differential equation (SDE): dx = f(x, t) dt+
g(x, t) dw, where x is an m-dimensional vector, w is m-dimensional Brownian motion, f is an m-dimensional
vector function, and g(x, t) is an m by m diagonal matrix, supplemented by observations bn at times tn, n =
1, 2, ... related to x(t) by bn = h(xn) + QWn, where h is a k-dimensional, generally nonlinear, vector function
with k ≤ m,Q is a k by k diagonal matrix, xn = x(tn), andWn is a Gaussian vector independent of the Brownian
motion in the SDE. Bayesian particle filters follow “particles" Xn

i , where i enumerates the particles and n refers
to the time, whose empirical density approximates the probability density functions (pdfs) Pn at times tn. At each
step, one first guesses a “prior" incorporating the information contained in the SDE; the prior is then corrected
by sampling weights determined by the observations, yielding a “posterior" density. The catch is that, in common
weighting schemes, most of the weights become very small very fast, leaving only a small number of significantly
weighted particles.

Our “implicit" filter avoids the catch by reversing the procedure. Rather than find samples and then determine
their probability, we first pick probabilities and then find samples that assume them. Specifically, we write the
posterior density, proportional to P (Xn+1|Xn)P (bn+1|Xn+1), as exp(−F (Xn+1)) (this defines a function F );
for each particle we sample a reference m-dimensional random variable ξ with a fixed pdf, say a Gaussian
exp(−ξT ξ/2)/(2π)m/2 (T denotes a transpose). We then represent Xn+1 as a function of ξ by solving the equa-
tion F (Xn+1) − φ = ξT ξ/2, where φ is needed to make the equation solvable (φ = minF will do the job but
may not be the optimal choice). The resulting Xn+1 is a sample of the posterior density, with sampling weight
exp(−φ)J (no explicit dependence on ξ!), where J is the Jacobian of the map ξ → Xn+1. It is easy to see that
these weights are well-distributed. In a test problem [4] devised to show the catastrophic collapse of the sampling
weights in a Bayesian filter in a large number of dimensions, our algorithm produces equal weights for all the par-
ticles in any number of dimensions. Note that the function F depends also on Xn, so that we are not representing
the posterior as a single function of a Gaussian, but as a sample of a large collection of functions of a Gaussian, a
distinct function for every particle at every step.

If the observation function h is linear, one can choose φ so that the equation F (Xn+1) − φ = ξT ξ/2 is directly
solvable and the Jacobian J is a constant independent of particle; the method can then be viewed as an efficient
implementation of the optimal importance sampler for sequential importance sampling [3]. If h is not linear, one
can choose φ so that an iteration converges quickly and the Jacobian is easy to evaluate.

Each observation b has implications for the past as well as the future– it may reveal as unlikely what had previously
appeared to be likely; a filter may need backward sampling for accuracy (a step often misleadingly motivated solely
by the need to fight sample impoverishment in Bayesian filters). This we do along the same lines– define a suitable
function F and represent each sample as a function of a reference variable.

We will present an application of our filter to the analysis of the circulation in the nearshore surf zone with a
shallow-water model and synthetic data.
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