

Satellite-derived long-term variability of sea surface temperature in the Mediterranean Sea

NIKOLAOS SKLIRIS, ANNITA MANTZIAFOU, SARANTIS SOFIANOS, ATHANASIOS GKANASOS,
PANAGIOTIS AKSAOPOULOS, and VASILIS VERVATIS

University of Athens, Applied Physics, Athens, Greece (nskliris@oc.phys.uoa.gr)

Twenty four years of AVHRR-derived sea surface temperature (SST) daily data (1985-2008) are used to investigate the long-term variability of this parameter in the Mediterranean Sea. Results indicate a strong eastward increasing sea surface warming trend with a mean annual warming rate of about $0.035\text{ }^{\circ}\text{C/yr}$ for the western sub-basin and of about $0.055\text{ }^{\circ}\text{C/yr}$ for the eastern sub-basin. The warming rate has increased considerably since the mid-nineties in both sub-basins. Empirical Orthogonal Function (EOF) analysis of the monthly composite anomaly time-series showed that the two sub-basins are relatively decoupled in terms of decadal scale variability patterns. The West Mediterranean basin-averaged SST anomalies are significantly correlated with the North Atlantic Oscillation (NAO) index variations, whereas the East Mediterranean basin-averaged SST anomalies are significantly correlated with the Indian Monsoon Index (IMI) variations during the 1985-2008 period.