

Geodesy reveals deep lateral magma flow and complex magma plumbing in Ethiopian spreading centre

Tim Wright (1), Eric Calais (2), Elias Lewi (3), Laura Bennati (2), Ian Hamling (1), Carolina Pagli (1), and Roger Buck (4)

(1) School of Earth and Environment, University of Leeds, Leeds, UK (t.j.wright@leeds.ac.uk), (2) Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, USA, (3) Institute for Geophysics, Space Science and Astronomy, University of Addis Ababa, Addis Ababa, Ethiopia, (4) Lamont Doherty Earth Observatory, Columbia University, New York, USA

The chain of volcanoes that runs through Afar in Ethiopia marks a subaerial spreading centre separating the Nubian and Arabian plates. In September 2005, a major dyke intrusion ruptured the 60-km-long Dabbahu segment of this plate boundary. The 4-8m-wide dyke was fed laterally from two shallow magma chambers at the north end of the segment and an inferred deeper source near the segment centre. A rapid deployment of ground-based geodetic instruments, and frequent satellite radar passes, have allowed tracking of the temporal and spatial pattern of surface deformation occurring since the major dyke intrusion - the first time this has been possible for a major rifting episode. Since that first intrusion a number of smaller dykes have been intruded in the same segment. Here we show that the post-intrusion response of the magmatic system reveals a magmatic plumbing system that is more complex than previously thought. In addition to the shallow chambers previously identified, a third, mid-segment chamber is present in the mid-crust. Furthermore, a broad subsiding area to the south-east of the rift segment can be explained only by the lateral flow of magma away from a reservoir in the lower crust towards the active rift segment - a distance of at least 60 km. Our results suggest that models of mid-ocean ridge magma systems may be too simple, and especially that transport of magma from sources away from the spreading axis may play an important role.