

Tree representation of time series: A case study of self-similarity and dynamics of channel bed morphology

Arvind Singh (1), Ilya Zaliapin (2), and Efi Foufoula-Georgiou (1)

(1) St. Anthony Falls Laboratory and National Center for Earth-surface Dynamics, Department of Civil Engineering, University of Minnesota, Minneapolis, USA (sing0336@umn.edu; efi@umn.edu), (2) Department of Mathematics and Statistics, University of Nevada, Reno, USA (zal@unr.edu)

We introduce a novel tree-based multiscale approach for time series analysis. A time series is represented by a tree such that each local maximum corresponds to a tree leaf; each local minimum to an internal node; and the global minimum to the tree root. The tree nodes are indexed using the Horton-Strahler indexing scheme, which is widely used to rank river tributaries. Under this ranking, the large-rank tree branches (sequences of nodes with the same rank) correspond to large-scale features of time series; while small rank branches correspond to small-scale features. We apply this technique to study the self-similar properties and dynamics of channel bed morphology, turbulent velocity fluctuations and corresponding sediment transport series as monitored in a large-scale experimental flume under different flow conditions.