

Astronomical control on climate and vegetation history at the Triassic-Jurassic transition

Micha Ruhl (1), Nina R. Bonis (1), Martijn H.L. Deenen (2), Hemmo A. Abels (3), Wout Krijgsman (2), and Wolfram M. Kurschner (1)

(1) Paleoecology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Budapestlaan 4, NL-3584 CD, Utrecht, the Netherlands, (2) Paleomagnetic Laboratory Fort Hoofddijk, Department of Earth Sciences, Faculty of Geosciences, Utrecht university, Budapestlaan 17, 3584 CD Utrecht, the Netherlands, (3) Stratigraphy and Paleontology, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 4, NL-3584 CD, Utrecht, the Netherlands

The end-Triassic mass extinction (\sim 201.5 Ma), marked by major terrestrial ecosystem changes and a 50% loss in marine biodiversity, closely coincides with the onset of intensified volcanic activity in the Central Atlantic Magmatic Province (CAMP), the largest igneous province on earth. The end-Triassic environmental crisis is followed by successive recovery in the early Jurassic Hettangian stage. However, accurate timing of events is poorly constrained.

Here we present combined chemical and biological proxy records and field observations, covering the uppermost Triassic and lower Jurassic marine successions of St. Audrie's Bay and East Quantoxhead (UK). A floating astronomical time-scale of \sim 2.5 Myr has been constructed based on the recognition of \sim 100-kyr eccentricity cycles. Individual black shale occurrences are interpreted to reflect precession-controlled changes in monsoon intensity. Gaseous CO₂ release by the increased volcanic activity strongly enhanced greenhouse warming and likely caused a shift from a diverse gymnosperm vegetation to a monotonous Cheirolepidiaceous conifer vegetation. Vegetation distribution at the Triassic-Jurassic transition was likely influenced by the strong temperature and humidity gradient from the oceans to the interior of Pangea. Vegetation cover was mostly situated in coastal regions, with the inlands being more arid. Strong eccentricity-scale paced increases in pollen concentrations suggest the inland expansion of Cheirolepidiaceous vegetation cover, which is likely caused by intensified monsoon activity. Our palynological data further shows precession-scale paced peaks in spore abundance during the mass extinction interval, suggesting astronomical forcing of the hydrological cycle under extreme climatic conditions.