



## Is 2-D turbulence relevant in the atmosphere?

Shaun Lovejoy (1,2) and Daniel Schertzer (3)

(1) McGill University, Department of Physics, Montreal, Canada (lovejoy@physics.mcgill.ca), (2) on leave to: NOAA, NOAA/OAR/ESRL/PSD, R/PSD1 325 Broadway, Boulder, CO 80305-3337, (3) Université Paris-Est, ENPC/CEREEVE, 77455, Marne-la-Vallée Cedex 2, France

Starting with (Taylor, 1935), the paradigm of isotropic (and scaling!) turbulence was developed initially for laboratory applications, but following (Kolmogorov, 1941), three dimensional isotropic turbulence was progressively applied to the atmosphere. Since the atmosphere is strongly stratified, a single wide scale range model which is both isotropic and scaling is not possible so that theorists had to immediately choose between the two symmetries: isotropy or scale invariance. Following the development of models of two dimensional isotropic turbulence ((Fjortoft, 1953), but especially (Kraichnan, 1967) and (Charney, 1971)), the mainstream choice was to first make the convenient assumption of isotropy and to drop wide range scale invariance. Starting at the end of the 1970's this "isotropy primary" (IP) paradigm has lead to a series of increasingly complex isotropic 2D/isotropic 3D models of atmospheric dynamics which continue to dominate the theoretical landscape. Justifications for IP approaches have focused almost exclusively on the horizontal statistics of the horizontal wind in both numerical models and analyses and from aircraft campaigns, especially the highly cited GASP (Nastrom and Gage, 1983), (Gage and Nastrom, 1986; Nastrom and Gage, 1985) and MOZAIC (Cho and Lindborg, 2001) experiments. Since understanding the anisotropy clearly requires comparisons between horizontal and vertical statistics/structures this focus has been unfortunate.

Over the same thirty year period that 2D/3D isotropic models were being elaborated, evidence slowly accumulated in favour of the opposite theoretical choice: to drop the isotropy assumption but to retain wide range scaling. The models in the alternative paradigm are scaling but strongly anisotropic with vertical sections of structures becoming increasingly stratified at larger and larger scales albeit in a power law manner; we collectively refer to these as "SP" for "scaling primary" approaches. Early authors explicitly using SP models to explain their observations include ((Van Zandt, 1982), (Schertzer and Lovejoy, 1985), (Schertzer and Lovejoy, 1987), (Fritts et al., 1988), (Tsuda et al., 1989), (Dewan, 1997; Lazarev et al., 1994), (Gardner et al., 1993), (Hostetler and Gardner, 1994). In addition, many experiments found non-standard vertical scaling exponents thus implicitly supporting the SP position. Today, state-of-the-art lidar vertical sections of passive scalars (Lilley et al., 2004) or satellite vertical radar sections of clouds give direct evidence for the corresponding scaling (power law) stratification of structures. State-of-the-art drop sondes have even been used to show that the IP standard bearer - 3D isotropic Kolmogorov turbulence - apparently doesn't exist in the atmosphere at any scale at least down to 5 m in scale or at any altitude level within the troposphere (Lovejoy et al., 2007). At the same time, massive quantities of high quality satellite data have directly demonstrated the wide range horizontal scaling of the atmospheric forcing (long and short wave radiances; see e.g. (Lovejoy et al., 2009a)) and numerical atmospheric models and reanalyses have been shown to display nearly perfect (scaling) cascade structures over their entire available horizontal ranges (Stolle et al., 2009). This shows also that the source/sink free "inertial ranges" used in IP models are at best academic idealizations.

The IP/SP opposition is arguably a main contributor to today's lack of scientific consensus about the scale by scale statistical structure of both the atmosphere and of atmospheric models and reanalyses. In order to resolve the deadlock, either the IP camp must show how the findings of wide range vertical and horizontal scaling can be adequately explained through a hierarchy of isotropic models, or the SP camp must explain the key aircraft and numerical model results cited against them as evidence of two (or more) isotropic regimes. In this talk we review the debate and argue that now exactly such a reinterpretation of the aircraft data has been found (Lovejoy et al., 2009b). We argue that the debate has now been decisively resolved in favour of the SP approaches so that neither 2-D isotropic nor 3D isotropic turbulence – are relevant in the atmosphere.

## References:

J.G. Charney, Geostrophic Turbulence, *J. Atmos. Sci.* 28(1971), p. 1087.

J. Cho and E. Lindborg, Horizontal velocity structure functions in the upper troposphere and lower stratosphere i: Observations, *J. Geophys. Res.* 106(2001), pp. 10223-10232.

E. Dewan, Saturated-cascade similtude theory of gravity wave sepctra, *J. Geophys. Res.* 102(1997), pp. 29799-29817.

R. Fjortoft, On the changes in the spectral distribution of kinetic energy in two dimensional, nondivergent flow, *Tellus* 7(1953), pp. 168-176.

D. Fritts, T. Tsuda, T. Sato, S. Fukao and S. Kato, Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere, *Journal of the Atmospheric Sciences* 45(1988), p. 1741.

K.S. Gage and G.D. Nastrom, Theoretical Interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP, *J. of the Atmos. Sci.* 43(1986), pp. 729-740.

C.S. Gardner, C.A. Hostetler and S.J. Franke, Gravity Wave models for the horizontal wave number spectra of atmospheric velocity and density flucutations, *J. Geophys. Res.* 98(1993), pp. 1035-1049.

C.A. Hostetler and C.S. Gardner, Observations of horizontal and vertical wave number spectra of gravity wave motions in the stratosphere and mesosphere ove rthe mid-Pacific, *J. Geophys. Res.* 99(1994), pp. 1283-1302.

A.N. Kolmogorov, Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. (English translation: *Proc. Roy. Soc. A434*, 9-17, 1991), *Proc. Acad. Sci. URSS., Geochem. Sect.* 30(1941), pp. 299-303.

R.H. Kraichnan, Inertial ranges in two-dimensional turbulence, *Physics of Fluids* 10(1967), pp. 1417-1423.

A. Lazarev, D. Schertzer, S. Lovejoy and Y. Chigirinskaya, Unified multifractal atmospheric dynamics tested in the tropics: part II, vertical scaling and Generalized Scale Invariance, *Nonlinear Processes in Geophysics* 1(1994), pp. 115-123.

M. Lilley, S. Lovejoy, K. Strawbridge and D. Schertzer, 23/9 dimensional anisotropic scaling of passive admixtures using lidar aerosol data, *Phys. Rev. E* 70(2004), pp. 036307-036301-036307.

S. Lovejoy et al., Atmospheric complexity or scale by scale simplicity? , *Geophys. Resear. Lett.* 36(2009a), pp. L01801, doi:01810.01029/02008GL035863.

S. Lovejoy, A.F. Tuck, S.J. Hovde and D. Schertzer, Is isotropic turbulence relevant in the atmosphere?, *Geophys. Res. Lett.* L14802, doi:10.1029/2007GL029359.(2007).

S. Lovejoy, A.F. Tuck, D. Schertzer and S.J. Hovde, Reinterpreting aircraft measurements in anisotropic scaling turbulence, *Atmos. Chem. Phys. Discuss.*, 9(2009b), pp. 3871-3920.

G.D. Nastrom and K.S. Gage, A first look at wave number spectra from GASP data, *Tellus* 35(1983), p. 383.

G.D. Nastrom and K.S. Gage, A climatology of atmospheric wavenumber spectra of wind and temperature by commercial aircraft, *J. Atmos. Sci.* 42(1985), pp. 950-960.

D. Schertzer and S. Lovejoy, The dimension and intermittency of atmospheric dynamics. In: B. Launder, Editor, *Turbulent Shear Flow 4*, Springer-Verlag (1985), pp. 7-33.

D. Schertzer and S. Lovejoy, Physical modeling and Analysis of Rain and Clouds by Anisotropic Scaling of Multiplicative Processes, *Journal of Geophysical Research* 92(1987), pp. 9693-9714.

J. Stolle, S. Lovejoy and D. Schertzer, The stochastic cascade structure of deterministic numerical models of the atmosphere, *Nonlin. Proc. in Geophys.* 16(2009), pp. 1-15.

G.I. Taylor, Statistical theory of turbulence, *Proc. Roy. Soc. I-IV*, A151(1935), pp. 421-478.

T. Tsuda et al., MST radar observations of a saturated gravity wave spectrum, *Journal of the Atmospheric Sciences* 46(1989), p. 2440.

T.E. Van Zandt, A universal spectrum of buoyancy waves in the atmosphere, *Geophysical Research Letter* 9(1982), pp. 575-578.