

Experimental study of carbonate-silicate-metal equilibria at pressures to 30 GPa: New insights into deep volatile cycles

Konstantin Litasov (1), Anton Shatskiy (1), Yingwei Fei (2), and Eiji Ohtani (1)

(1) Department of Earth and Planetary Materials Science, Tohoku University, Sendai, Japan (klitasov@m.tains.tohoku.ac.jp),

(2) Geophysical laboratory, Carnegie institution of Washington, Washington DC, USA (fei@gl.ciw.edu)

Carbon and hydrogen are among the most important, but uncertain constituents in the Earth's deep interior. In this presentation we will review resent results on carbonate-silicate-metal equilibria at pressures up to about 30 GPa using multianvil technique. *In situ* X-ray diffraction experiments were performed at the synchrotron radiation facility SPring-8. We have studied the following systems: $\text{MgCO}_3 + \text{SiO}_2$, $\text{CaCO}_3 + \text{SiO}_2$, $\text{MgCO}_3 + \text{Fe}$, and $\text{CaCO}_3 + \text{Fe}$. Preliminary results from *in situ* measurements for the $\text{MgCO}_3 + \text{H}_2\text{O} + \text{Fe}$ and $\text{CaCO}_3 + \text{H}_2\text{O} + \text{Fe}$ systems and from laboratory experiments on peridotite and eclogite, coexisting with ultra-reduced C-O-H fluids, will also be discussed.

The reaction of $\text{MgCO}_3 + \text{SiO}_2 = \text{MgSiO}_3 + \text{CO}_2$ was studied using both the multianvil and diamond anvil cell (DAC) technique. We observed melting reaction at pressures up to about 32 GPa. Decarbonation was observed at pressures below 6 GPa and, surprisingly, in the short pressure interval of wadsleyite + stishovite stability (in MgSiO_3 system) near 16 GPa. In all other experiments reaction proceeds with the formation of MgSiO_3 phase and melt. The Mg/Si ratio of partial melt, coexisting with Mg-perovskite, was 1.7-2.0, whereas at lower pressures this ratio is 2.3-2.5. Formation of Mg-perovskite was observed in DAC experiments at pressures 25-100 GPa, however, CO_2 was not detected by *in situ* X-ray diffraction or *in situ* Raman spectroscopy, which may indicate melting reaction at higher pressure also. The reaction $\text{CaCO}_3 + \text{SiO}_2 = \text{CaSiO}_3 + \text{CO}_2$ was studied at pressures 3-22 GPa. In contrast to the Mg-system we observed the formation of CO_2 fluid at 6-10 GPa and melting at 16-17 GPa. The partial melt has a Ca/Si ratio of 2.3-3.0. The reactions $\text{MgCO}_3 + \text{Fe}$ and $\text{CaCO}_3 + \text{Fe}$ were also studied at 6 and 15-16 GPa. We observed fast formation of Fe_3C in the Mg-system at 900-1000°C, according to the reaction $\text{MgCO}_3 + 5\text{Fe} = \text{Fe}_3\text{C} + 3(\text{Fe}_{0.67}\text{Mg}_{0.33})\text{O}$. In the Ca-system the reaction proceeds with formation of Fe_3C and Ca-rich melt with a Ca/Fe ratio of near 4.

In discussion, we outline (a) relative stability of Fe-hydride and Fe-carbide and their role in core formation and metal precipitation, (b) possibility of carbonate reduction during deep subduction, (c) possible role of melting in COH-fluid equilibria with mantle assemblages, (d) comparison of mantle solidi under reduced and oxidized conditions up to lower mantle P-T conditions.