

Retrodicting the late Cenozoic dynamic topography

Robert Moucha (1,2), Alessandro Forte (1), Petar Glisovic (1), David Rowley (3), Jerry Mitrovica (4), Nathan Simmons (5), and Stephen Grand (6)

(1) GEOTOP, Université du Québec à Montréal, Montréal, Canada (rmoucha@gmail.com), (2) Department of Physics, University of Toronto, Toronto, Canada, (3) The Department of the Geophysical Sciences, University of Chicago, Chicago, USA, (4) Department of Earth and Planetary Sciences, Harvard University, Cambridge, USA, (5) Atmospheric, Earth & Energy Division Lawrence Livermore National Laboratory, Livermore, USA, (6) Jackson School of Geological Sciences, University of Texas at Austin, Austin, Texas, USA

We reconstruct the global late Cenozoic dynamic topography by carrying out backward-in-time mantle flow simulations starting with present-day heterogeneity derived from a high-resolution joint seismic-geodynamic tomography model (Simmons et al., 2009). Herein, we will explore the associated uncertainties and geological implications of our topography retrodictions. Heuristic estimates of uncertainties are obtained using two different approaches to backward mantle convection – the backward advection method and the quasi-reversible convection method. Comparison of these two methods exposes the relative importance of diffusion in our retrodictions. Additional contributions to our uncertainties that originate from the starting models of mantle heterogeneity and rheology are also investigated. We further assess the validity of our models of topography evolution with the geological record. In particular, we focus on dynamic surface features such as the Colorado Plateau in the southwestern US, the Angolan margin and Congo-Zaire basins in Africa.